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Abstract

The development of domain-specific languages and the migration of legacy software

have long been problems for which language composition offers an enticing solution.

Unfortunately, approaches thus far have failed to meet expectations, largely due to the

difficulty of writing composed programs. Language composition editors have traditionally

fallen into two extremes: traditional parsing, which is inflexible or ambiguous; or syntax-

directed editing, which programmers dislike. This thesis extends an incremental parser to

create an approach that bridges the two extremes: an editor that ‘feels’ like a normal text

editor, but always operates on a valid tree as in syntax-directed editing, which allows users

to compose arbitrary syntaxes. I first take an existing incremental parsing algorithm and

fix several errors in it. I then extend it with incremental abstract syntax trees and support

for whitespace-sensitive languages, which increases the range of languages the algorithm

can support. I then introduce the notion of language boxes, which allow an incremental

parser to be used for language composition and implement them in a prototype editor.

Finally, I show how language boxes can, in many useful cases, be automatically inserted

and removed without the need for user intervention.
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Chapter 1

Introduction

Language composition has long been an enticing solution to problems such as DSL

development and migrating legacy software. However, current approaches have failed to

make this promise a reality because they struggle with the problem of writing composed

programs. In this thesis I develop a novel approach to editing composed programs, based

on incremental parsing, which bypasses many of these problems.

1.1 Motivation

Due to the popularity of general purpose languages, they are often a user’s first choice

over domain specific languages (DSLs), even if the DSL would be better suited for the

task. Unfortunately, once the choice for a particular language is made, it is difficult to

branch out to others as there is a wall between different languages that makes it difficult

to use them in conjunction. Most languages have thus been extended with interfaces to

popular DSLs, such as SQL, which almost all major general purpose languages support.

However, such extensions are often crude (e.g. embedding via strings) and the languages

remain syntactically isolated from each other, limiting interactivity between them and

making them less safe (e.g. injection attacks).

Another growing problem is that of legacy software. Many important software systems

that we rely on today were written in the late 70s and 80s using languages that are

now considered outdated. Attempts to replace such legacy systems with equivalents

written in modern languages are often unsuccessful [30, 31, 34], as it requires swapping

out the old system in one go. A better approach would be to gradually replace small

parts of the system and test each change rigorously before moving on to the next, until

the entire system has been successfully rewritten, thus making it easier to avoid nasty

1
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surprises when the new system goes live. Unfortunately, this is not possible with current

technologies.

1.2 The problems with language composition

A partial solution to these problems is offered by language composition, or more specifi-

cally, one form of it which extends languages by embedding one language into another.

The idea of language composition has been around since the late 60s [16] but has not

managed to gain widespread popularity apart from settings such as HTML/JavaScript or

foreign function interfaces (FFI). A major reason for this is that syntactically composing

programming languages is non-trivial. This makes editing composed programs difficult.

Programs are typically edited and executed in two different ways, either via a parsing-

based approach using a normal text editor, or through the use of syntax-directed editors

(SDE). Unfortunately, using traditional parsers for language composition can be difficult

to deal with: composing two LR grammars, in general, leads to a non-LR grammar [63];

generalised parsing approaches often lead to ambiguities, which are difficult to detect [15].

To solve this problem, parsing-based approaches typically use separators between languages

to disambiguate their syntax. Separators, however, are inflexible as they must not appear

in any of the composed languages.

Syntax-directed editors follow a different philosophy for editing programs. Instead of

allowing the user to type programs freely, syntax-directed editors create parse trees

from predefined templates that the user fills in with more specific information. For

example, when wanting to write a for-loop in a syntax-directed editor, the user selects

the loop from a list of statements1 which are valid at the current program location. The

editor then inserts the whole construct into the parse tree, including condition and block

delimiters (if needed), leaving only the bounds of the condition and the name of the

index variable for the user to fill in. This ensures that there is always a valid parse tree

and makes it impossible to create syntax errors. A useful side-effect of this is that it

completely avoids ambiguity issues. This makes syntax-directed editors excellent tools

for language composition. However, the restrictive nature of syntax-directed editors –

text must be edited relative to an abstract syntax tree (AST) which prohibits certain

operations such as selecting text across AST elements – can make editing such programs

a frustrating experience and may alienate some users, especially those experienced with

more traditional text editors [42].
1Modern syntax-directed editors have managed to improve the user experience by partially imitating

traditional text editors. Statements need not to be chosen from a list but can be typed in and are
automatically completed once the editor recognises them. For example, typing in for would automatically
create the entire statement.
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1.3 A new approach

The aim of this thesis is to find a practical solution for language composition that doesn’t

suffer from the problems that affect traditional grammar composition and syntax-directed

editors. While there are existing parsing-based approaches to language composition, they

either have problems with ambiguities (see Section 2.3), or limit the expressiveness of the

composed languages, for example by introducing separators which must not appear in

any of the languages (see Section 7.4). This section outlines an alternative parsing-based

approach which allows the composition of languages without introducing ambiguities or

restricting languages, while providing information about the program back to the user in

as close to real-time as possible.

1.3.1 Requirements

Since the composition of two grammars typically results in ambiguities, many approaches

solve this problem by introducing special markers which separate the languages (e.g. [91,

12]). Others (e.g. Copper [82, 70]) solve ambiguities between languages by prioritising

one language over the other. Neither solution is ideal as they restrict one or more of

the composed languages, i.e. special markers must not appear in any of the composed

languages, and the prioritisation of one language requires limiting the expressiveness

of the other. Such solutions are also language specific and need to be defined for each

composition separately. An alternative solution to these problems is to use non-text-based

separators between languages, which by definition cannot exist in any of the languages.

This can be achieved by using an editing approach that is not dependent on the textual

representation of the program, for example, by editing a parse tree directly, similar to

syntax-directed editing.

In a traditional, batch-oriented parser programs are always parsed from top to bottom,

generating a new parse tree every time the program is changed. With increasing program

sizes this can quickly lead to performance problems. Many editors that provide features

such as syntax highlighting, name binding analysis, or code completion thus employ

heuristics, which don’t require an always up-to-date parse tree. The downside is that such

heuristics are often inaccurate, which can, for example, lead to faulty syntax highlighting

or unnoticed name binding errors. Working on an always up-to-date parse tree instead

achieves much better results. Using a parse tree also makes the implementation of such

features much easier than developing and carefully refining heuristics. Additionally,

heuristics are typically hand-written for a particular language, whereas the analysis of a

parse tree can be generalised to work with multiple languages.
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1.3.2 Solution

A solution to both of these problems is incremental parsing. Firstly, an incremental parser

works on parse trees instead of plain text, which enables the use of non-textual special

markers to separate languages and avoid ambiguity. Secondly, an incremental parser

can find and re-parse only those parts of a program that have changed, while reusing

results from previously generated parse trees. This allows such parsers to be used “online”,

i.e. continuously re-parsing user changes, even in large programs, as the user types,

resulting in an always up-to-date parse tree which allows instantaneous and accurate

feedback to the user. Incremental parsing algorithms exist for a variety of grammar types,

e.g. LL or PEG (see Section 2.10). However, the largest class of unambiguous grammars

that we can define is LR. Also, due to the popularity of parser generators such as Yacc,

LR grammars for many popular programming languages, such as Java, PHP, SQLite, and

Go, already exist. This makes LR a good choice for language composition.

In this thesis I propose a new solution for language composition, which avoids ambiguity

issues, while keeping program editing as flexible as it is in normal text editors. The

solutions presented in this thesis are implemented within a new programming editor

Eco2. The approach I propose uses an incremental parsing algorithm created by Tim

Wagner [88] as its core, correcting and extending it in various ways. Though originally

these algorithms were intended for parsing individual languages, this thesis shows how

they can be extended to create a new approach for editing composed programs. First I

correct several problems in Wagner’s algorithm as well as providing explanations for some

vague or missing parts. I then show how the algorithm can be extended with concepts

such as incremental abstract syntax trees and support for whitespace-sensitive languages;

the former paves the way for IDE features such as syntax-highlighting and name binding;

the latter increases the range of languages the algorithm can support. I then introduce

the novel concept of language boxes3, which allow the incremental parsing algorithm to

be used for language composition. Finally, I show that in many useful cases, language

boxes can be automatically inserted and removed by the editor, without user intervention.

1.4 Overview

Incremental parsers are based on traditional parsing algorithms. However, instead of

parsing a whole file each time the program is executed, incremental parsers generate and

update a parse tree from the user input as the user types. When editing a program, this
2The prototype editor Eco can be downloaded from https://github.com/softdevteam/eco
3The ‘language boxes’ in this thesis should not be confused with the modular language definition

concept of the same name from [66].

https://github.com/softdevteam/eco
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parse tree is then modified directly, e.g. changing the name of a variable directly updates

the value of the token in the parse tree that represents that variable. After each edit the

incremental parser updates and re-parses the relevant parts of the parse tree, attempting

to reuse as many unchanged parts of the tree as possible. This is not only faster than

parsing the entire program from scratch, but also has the added benefit that meta-data

on parse tree nodes is kept intact when the program is re-parsed.

Editing programs this way allows us to embed languages into one another without

separators, by using language boxes. These boxes can be manually inserted by the user to

write code in another language. When creating a new language box, it is inserted directly

into the parse tree. Each language box has its own parse tree which is maintained by

its own incremental parser. This way languages stay completely separated from each

other which bypasses all ambiguity problems. For example, when editing a program in

language X, the user can at any point insert a language box for language Y. Typing inside

of that box edits in language Y, while typing outside of the box edits in language X.

Programs may contain any number of languages boxes, and language boxes can be nested

arbitrarily deep. While the main focus of this thesis is the editing of textual languages,

language boxes are not limited to it: I thus also briefly explore the use and composition

of non-textual languages.

This thesis also shows how an incremental parser can be extended to produce incremental

ASTs. ASTs are used to compile programs into executable code but are also needed to

semantically analyse programs, giving users additional information about the correctness

of their code (name binding), formatting it to make it more aesthetic (syntax-highlighting),

or guiding them to make writing code easier (code completion). Generating ASTs and

analysing them is time consuming, and is thus run as a subprocess in many editors. This

can often lead to noticable delays when using IDE features such as code completion, for

example. Generating ASTs incrementally improves the performance of such features, and

opens the door for incremental approaches, which can reduce these delays even further.

Unfortunately, some languages don’t naturally work with an incremental parser. An

example for this is Python [81], which uses indentation to mark blocks. This typically

requires an additional phase to generate indentation tokens into the sequence of tokens

generated by a lexer. Making this phase incremental is thus also explored in this thesis.

Even though language boxes fit naturally within an incremental parser, they still come

with some additional challenges. One is the interaction of language boxes with other

tokens such as comments and strings. This thesis thus explores how an incremental

lexer can be extended to support the embedding of language boxes within other tokens

without having to flatten the language box into normal text. Another is that language
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boxes need to be inserted manually by the user, which in some cases can seem tedious

and unnecessary. This thesis thus also explores how language boxes can be inserted

automatically and without the need for user interaction whenever possible.

1.5 Contributions

The main contributions of this thesis are as follows:

1. Identifying and fixing flaws in Wagner’s incremental parsing algorithm.

2. Extending the fixed incremental parsing algorithm with incremental abstract syntax

trees and support for whitespace-sensitive languages such as Python.

3. Introducing the novel concept of language boxes, showing that they allow fine-

grained syntactic language composition.

4. An extension to language boxes that allows them to be automatically created in

many realistic circumstances.

1.6 Synopsis

The structure of this thesis is as follows: Chapter 2 gives a brief overview of popular

parsing techniques and the problems that arise when they are used in combination with

language composition. It also provides background information about the incremental

parsing techniques developed by Tim Wagner [88] and extends that information with

details that Wagner’s thesis only touches upon or that are ambiguously explained. Chapter

3 discusses Wagner’s error recovery algorithms, explains issues with their implementation,

and proposes fixes and some optimisations. Chapter 4 shows extensions to Wagner’s

incremental parsing techniques, adding support for incremental abstract syntax trees and

whitespace-sensitive languages such as Python. Chapter 5 shows the editor Eco which

was produced alongside this thesis and explains some finer details of its implementation.

The main focus of that chapter is on language boxes, one of the major contributions

of this thesis. It explains how language boxes can be integrated into an editor and

shows how they can be useful for language composition of textual as well as non-textual

languages. The chapter also discusses the testing framework used in Eco and shows

how employing fuzz testing helped ridding Eco of bugs that would otherwise have been

difficult to find. Chapter 6 discusses the problem of embedding language boxes into

strings and comments and proposes a solution which has been implemented in Eco.
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Chapter 7 shows an (optional) extension for language boxes: automatic language box

detection. This extension aims to streamline the use of language boxes by inserting them

automatically, wherever possible, without user interaction and without imposing on the

user’s ability to type freely. Finally, Chapter 8 discusses possible further extensions to

Eco and incremental language technology in general that were out of the scope of this

thesis.

1.7 Publications

The majority of Chapters 4 and 5, and parts of Chapter 2, have appeared in an identifiable

form in the following publications of which I was the main author:

• Lukas Diekmann and Laurence Tratt. Parsing Composed Grammars with Language

Boxes. Workshop on Scalable Language Specification, June 2013

• Lukas Diekmann and Laurence Tratt. Eco: A language composition editor. In SLE,

pages 82–101, September 2014.

Some parts of Chapter 5 have appeared in the following publication, where I was the

main author of parts relevant to Eco and secondary author otherwise:

• Edd Barrett, Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt. Fine-grain

language composition. In ECOOP, July 2016.



Chapter 2

Background

This chapter serves as a refresher for concepts the reader should be familiar with before

tackling the remaining chapters and gives an overview of the techniques which this thesis

is largely based on. Sections 2.1, 2.2, and 2.3 describe typical parsing techniques and

explain how they compare in the context of language composition. Sections 2.4, 2.5, and

2.6 give an overview of the incremental parsing techniques developed by Tim Wagner [88],

some of which include my own implementations wherever Wagner didn’t provide his own

(all algorithms in this thesis are marked with subscripts, i.e. W for Wagner’s original

algorithms, Wb for implementations based on Wagner’s descriptions, WD for versions of

Wagner’s algorithms that have been fixed or optimised by me, and D for my own original

algorithms).

2.1 Context-free grammars

Most non-natural languages (i.e. programming or markup languages) have an underlying

context-free grammar that describes their syntax and can be used to decide if a program

is valid in that language or not. In the remainder of the thesis we will call context-free

grammars CFGs or just grammars.

Unless stated otherwise, all grammars in this thesis use the same notation as Yacc [38]

(a popular and widely used parser generator). A grammar consists of one or more rules.

The left-hand-side of a rule describes its name and can be used to reference it within

other rules. The right-hand-side of a rule consists of one or more productions (often called

‘alternatives’) which are separated by the character ‘|’. Each production consists of a

sequence of symbols; a symbol is either a nonterminal referencing another rule from the

grammar (one of which is chosen as the start rule), or a terminal, i.e. a token type such

8
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// Grammar rules
%start E
%%
E: T
| E "add" T ;

T: P
| T "mul" P ;

P: "int" ;

// Lexing rules
add:"\+"
mul:"\*"
int:"[0 -9]+"

Listing 2.1: An example of a simple grammar for a basic calculator language. The grammar
rules are shown on the left; lexing rules on the right. The separation of multiplication and
addition into two rules T and E is to allow multiplication to take priority over addition. In Yacc,
the start rule can be declared explicitly. Alternatively, Yacc chooses the first rule in the grammar
as the start rule. The explicit use of ‘%start’ is therefore omitted for the remainder of this thesis.

as INT. Lexing rules are of the form ID: REGEX and are considered in the order in which

they are defined to avoid longest-match ambiguities. Listing 2.1 gives an example of a

simple grammar for a calculator language.

2.2 Parse trees

In order to parse a program, it is first split into tokens by a lexer according to some lexing

rules. For example, a lexer that knows about arithmetic would likely split the program

‘1+2’ into three tokens (1, INT), and (+, add), (2, INT), where each token is of the form

(value, type). A parser then takes the stream of tokens as input and decides if the program

is valid with respect to the given language. Parsers can be either written by hand or

generated from a grammar. The result of a parser is typically a tree representation of

the program, called a parse tree. Figure 2.1a shows a parse tree, constructed using the

calculator grammar from Listing 2.1.

A parse tree consists of tokens, representing input generated by the user, and nonterminals,

representing grammar rules, which are generated by the parser. Nonterminal nodes have a

type but no value and can have other nonterminals and tokens as children or be completely

empty. Tokens have a value and a type but cannot have children at all. Unless stated

otherwise, all parse trees shown within this thesis will use the calculator grammar from

Listing 2.1. They also follow a consistent colouring scheme, shown in Figure 2.1b, which

aids in the understanding of some of the algorithms presented later on in this thesis.

2.3 Parsing and syntax-directed editing

Traditionally, programs are created by typing text into an editor and saving it to a file,

which is then processed by a parser. While there are many possible approaches to parsing
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E

E

T

P

1
int

+
add T

T

P

2
int

*
mul P

3
int

(a) Parse tree

E

E

T

P

1
int

*
mul

+
add T

T

P

2
int

*
mul

+
add P

3
int

(b) Colouring scheme

Figure 2.1: (a) A parse tree generated from the input ‘1+2*3’ using the calculator grammar
from Listing 2.1. Tokens are represented as rectangles, while nonterminal nodes are represented
as rounded rectangles. (b) The parse tree colouring scheme used throughout this thesis. Subtrees
containing changes are coloured in green. New tokens, inserted by the user, and new nonterminals
generated by the parser (not shown) are coloured in orange. Nodes and subtrees containing errors
are red. Isolated nodes, which are introduced in Chapter 3, are purple.

text, three approaches can be used as exemplars of the major categories: LR parsing,

generalised parsing, and PEG parsing. A different technique is syntax-directed editing,

where the user is guided by the editor, which removes the need for parsing. This section

briefly explains the different techniques and to which extent they can be used for language

composition.

2.3.1 LR parsers

Due to Yacc’s predominance, LR-compatible grammars are commonly used to represent

programming languages. Indeed, many programming language grammars are deliberately

designed to fit within LR parsing restrictions.

LR parsers [44, 1] are typically created through the use of parser generators. The generator

reads a grammar and creates a state graph from it. Each state in the graph references

one or more rules. The edges between states are labelled with the input the language can

understand. From this graph the generator then constructs a parse table. A parse table

is, in essence, a more memory efficient representation of the state graph that simplifies

the processing of inputs. Figure 2.2 shows an LR grammar alongside its state graph and

parse table.

Once the parse table has been generated the state graph can be discarded. The parse

table is used by the parser to decide if some input is valid for a given grammar and to

construct a parse tree from it. When parsing input the parser uses a parsing stack to
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%start S
%%
S: A "x"; // (I)
A: "c"; // (II)

0
Start: .S
S: •Ax
A: •c

1
Start: S•

2
S: A•x

3
A: c•

4
S: Ax•

S

A

c x

Actions Gotos

State c x $ S A

0 S(3) 1 2
1 Accept
2 S(4)
3 R(II)
4 R(I) 6

Figure 2.2: When creating a parser from a grammar (left), the parser generator first constructs
a state graph (middle). The graph starts at state 0. Solid edges between states describe the
shifting of terminals, dashed lines describe Goto transitions from reductions. Each item within
a state [N : α • β] references one of rule N ’s productions; α and β each represent zero or more
symbols; with the dot (•) representing how much of the production must have been matched (α)
if parsing has reached that state, and how much remains (β). The state graph is then transformed
into a parse table (right): S(x) means ‘shift to state x’; R(y) means ‘reduce grammar production
y’. Empty cells in the table represent errors. The $ terminal is special and automatically added
by the parser; it describes the end of the file.

store the parse tree and current state. The stack is initialised with the end-of-file symbol

and state 0, e.g. ($, 0). The parser then reads a token from the input and, using its type,

looks up its action for the current state from the parse table. The currently processed

token is also called lookahead. The parse table returns Shift(x), Reduce(y), Error, or

Accept. Shift(x) pushes the lookahead onto the stack, moves to state x and sets the next

token from the input as the new lookahead. Reduce(y), where y is of the form N : α,

pops |α| elements from the stack, uses the current state on the stack to look up the goto

state for N and moves to the resulting state. It then creates a new nonterminal N with

the popped elements as children, and pushes it onto the stack. When the parse table

returns Accept the input has been successfully parsed.

For the grammar in Figure 2.2 the parser would parse the input “cx” as follows: We

start in state 0 and the first token is ‘c’. The parse table returns S(3), which means we

shift the lookahead ‘c’ onto the stack and move to state 3. The next lookahead is ‘x’ for

which the parse table returns R(II). According to the rule, we pop one element from the

stack which sets the parser back to state 0. We then look up A’s Goto state, which is

2, and move there. Then we create a new nonterminal A with child ‘c’ and push it onto

the stack. The lookahead is still ‘x’, however, the parser is now in state 2, for which the

parse table returns S(4), so we shift the lookahead onto the stack and move to state 4.

Since the input is now empty, the next lookahead is ‘$’, for which the parse table returns

R(I). We pop the elements ‘x’ and ‘A’ from the stack, move to state 1 and push a new

nonterminal ‘S’ with children ‘x’ and ‘A’ onto the stack. Finally, the parse table returns

Accept and the input has been successfully parsed.
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// Grammar 1
%start S1
%%
S1: C "x" ;
C: "w" ;

// Grammar 2
%start S2
%%
S2: B ;
B: "w" "x" ;

0
Start: .S
S: .S1
S: .S2

S1: .Cx
S2: .B
B: .wx
C: .w

1
Start: S.

2
C: w.
B: w.x

3
S1: C.x

4
S2: B.

5
S: S1.

6
S: S2.

7
S1: Cx.

8
B: wx.

S

S1

S2

C

w

B

x

x

Figure 2.3: State graph after composing two grammars through union (S: S1 | S2). Generating
a parse table from this graph results in a Shift/Reduce conflict for state 2 and symbol ‘x’. The
symbol can be processed by either directly shifting ‘x’ resulting in state 8, or by first reducing
C: w, resulting in state 3, and then shifting ‘x’ to reach state 7.

Even though LR(1) is more powerful than LALR (i.e. LALR only accepts a subset of the

languages that LR(1) can accept), most parser generators, including Yacc, use the latter.

Since most programming languages can be expressed in LALR, and LR(1) tables are

exponentially bigger than LALR tables, this was an obvious choice for the performance

and memory lacking computers of the 1970s [19, 3]. Nowadays, computers are fast enough

to make LR(1) parser generation feasible, especially when paired with techniques that

significantly reduce the size of LR(1) state graphs [62].

Unfortunately, composing two LR grammars does not, in general, result in a valid LR

grammar [63]. A simple example for this is the composition of the two languages A: ‘a’

and B: ‘a’, which is clearly ambiguous since we cannot know whether we should parse

the input ‘a’ in language A or language B. A slightly less obvious example is shown in

Figure 2.3. Composing the two LR(1) grammars through union, e.g. S: S1 | S2, results

in an ambiguous grammar which can be seen in state 2. When parsing the input ‘wx’, the

parser cannot decide whether ‘x’ should be shifted immediately, or if a reduction should

be applied first, since both are valid actions. When generating a parse table from this

state graph, this would thus result in a Shift/Reduce conflict, as LR parse tables only

allow one action per cell.

One partial solution to this is embodied in Copper which, by making the lexer lazy

and context-sensitive, is able to allow many compositions which would not normally

seem possible in an LALR parser [82, 70]. However, this requires nested languages to be

delineated by special markers, which is visually obtrusive and prevents many reasonable

compositions.
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2.3.2 Generalised parsing

Generalised parsing approaches such as [23, 71, 85] can accept any CFG including inher-

ently ambiguous grammars, which makes them a good choice for language composition.

When parsing ambiguous input, the parser follows each option and generates multiple

parses of the same program. A generalised parser constructed from the composed grammar

in Figure 2.3 would be able to parse the program ‘wx’ by following both options and

producing two distinct parse trees (or a single parse forest where subtrees are shared

between multiple parse trees) as a result. Though parsing ambiguous grammars will

always be less efficient than parsing unambiguous ones, GLR runtime has been greatly

improved [39] and measuring the effects of ambiguity on practical languages has shown

that its impact on speed in such cases is lower than feared [89, 54].

Unfortunately, programming language tools (e.g. editors) and ambiguity don’t work well

with one another since the latter can hardly ask the user which parse (of possibly many)

they intended. To make matters worse, two unambiguous grammars, when composed,

may become ambiguous. We know that ambiguity is undecidable [15], i.e. the only way

to determine CFG ambiguity is to test every possible input, which is impractical since

most CFGs describe infinite languages. Although heuristics for detecting ambiguity exist,

all existing approaches fail to detect at least some ambiguous grammars [83].

Traditional parsers, including many generalised parsers, run lexing and parsing as two

separate phases. Scannerless parsers, a variant of generalised parsers, on the other hand

intertwine the two [86]. This allows them to automatically solve lexical ambiguities by

context. For example, the grammar S: ‘x’ ‘a’ ‘b’ | ‘y’ ‘ab’ is problematic for a

parser with a separate lexing phase. While we can create a conflict-free LR parser from

it, the lexing phase doesn’t have enough information to determine if the input ‘ab’ should

be tokenised as two tokens ‘a’ and ‘b’, or a single token ‘ab’ (a lexer will usually pick

the longest match, which in this case would be ‘ab’). A scannerless parser doesn’t have

this problem and will automatically choose the tokenisation that is valid in the current

context. If it previously parsed ‘x’, then the only valid character following this is ‘a’. If

however the first character was ‘y’, then only ‘ab’ is valid at this point. In essence, a

scannerless parser looks at the grammar first and then tries to complete it by generating

those tokens from the input that are expected next; a traditional LR parser on the other

hand creates the tokens first and then tries to match them to rules from the grammar.

Due to the lack of a lexer, scannerless parsers are well suited for language composition

as they remove the need for composing the lexing rules as well as the grammar rules.

However, scannerless parsers introduce problems through the longest match ambiguity

(i.e. it is not always clear if a longer match is preferable over multiple smaller matches) and
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+

+ 2

1 + 2

Figure 2.4: Writing a program 1+2 using syntax-directed editing. The graphic shows the results
after each keypress. The user needs to start by writing ‘+’, which creates a subtree for additions
leaving two blank nodes for the left- and right-hand-side. These nodes can then be filled with the
rest of the expression.

the reserved-identifier ambiguity (i.e. should keywords be preferred over identifiers) [68].

To solve these problems it is necessary to add reject rules to the grammar [85], thus

ignoring other interpretations of a program and making the parser non-context-free [80]

and undefined under composition.

2.3.3 PEG

PEGs (Parsing Expression Grammars) are a modern update of a classic parsing ap-

proach [32, 35]. PEGs have no relation to CFGs. They are closed under composition

(unlike LR grammars) and are inherently unambiguous (unlike generalised parsing ap-

proaches). Both properties are the result of the ordered choice operator e1 / e2 which

means “try e1 first; if it succeeds, the ordered choice immediately succeeds and completes.

If and only if e1 fails should e2 be tried.” However, this operator means that simple

compositions such as S: S1 / S2, where S1 and S2 are the grammars of two languages

with S1: ‘a’ and S2: ‘a’ ‘b’, fail to work as expected, because if the LHS matches a,

the RHS is never tried, even if it could have matched the full input sequence. This means

one has to be very careful when composing grammars together so as to not accidentally

‘hide’ one of the grammars due to the other one always succeeding. To make matters

worse, in general such problems cannot be determined statically, and only manifest when

inputs parse in unexpected ways.

2.3.4 Syntax-directed editing

Syntax-directed editing (SDE) works very differently to traditional parsing approaches,

always operating on an abstract syntax tree (AST). AST elements are instantiated as

templates with holes, which are then filled in by the user (see Figure 2.4).

This means that programs being edited are always syntactically valid and unambiguous

(though there may be holes with information yet to be filled in). This side-steps the
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flaws of parsing-based approaches, but because such tools require constant interaction

with the user to instantiate and move between AST elements, the SDE systems of the

70s and 80s (e.g. [74, 4, 10, 21, 60]) were rejected by programmers as restrictive and

clumsy [42, 48, 57] because they didn’t align with the way programmers reason about

writing code [73, 50].

More recently, the MPS editor has relaxed the SDE idiom, making the entering of text

somewhat more akin to a normal text editor [64]. In essence, small tree rewritings are

continually performed as the user types, so that typing 2 , Space , + , Space , 3

transparently rewrites the ‘2’ node to be the LHS of the ‘+’ node before placing the cursor

in the empty RHS box of the ‘+’ node where ‘3’ can then be entered in. This lowers,

though doesn’t remove, one of the barriers which caused earlier SDEs to disappear from

view. Authors have to manually specify such rewritings for each language. Furthermore,

the rewritings only affect the entry of new text. Editing a program still feels very different

from a normal text editor. For example, deleting nodes requires great care and special

actions, e.g. deleting ‘+ 2’ from the expression ‘1 + 2 * 3’ is not possible without also

deleting ‘*’, which then has to be re-entered. Similarly, only whole nodes can be selected

from the AST, so one cannot copy ‘2 +’ from the expression ‘2 + 3’ on-screen.

Put another way, MPS is sometimes able to hide that it is an SDE tool, but never for

very long. The initial learning curve is therefore relatively steep and unpleasant for many

programmers.

2.3.5 Summary

In summary, when it comes to language composition, parsing approaches are either

too limited (LR parsing), allow ambiguity (generalised parsing), or are hard to reason

about (PEG parsing). While approaches such as Copper [82, 70] and Spoofax [41] have

nonetheless been used for some impressive real-world examples, I believe that such issues

might limit uptake. Syntax-directed editors on the other hand are ideal for language

composition as there is no need for parsing and thus no ambiguity. Unfortunately, SDEs

are difficult to learn and get used to and many programmers have rejected them in the

past due to their steep learning curve and unfamiliar work flow.

2.4 An overview of incremental lexing and parsing

This section gives an overview of incremental lexing and incremental parsing which will

be explained in more detail in Sections 2.5 and 2.6.
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// Parser
Var: Id "eq" Val;
Id: "id";
Val: "int";

// Lexer
eq:"="
id:"[a-z]+"
int:"[0 -9]+"

Figure 2.5: An example of a parse tree constructed from the grammar on the left. The minimal
parse tree consists of three special nodes: a Root nonterminal; and BOS (Beginning of Stream)
and EOS (End of Stream) terminals (both children of Root). For brevity reasons, these nodes
are elided for the remainder of this thesis. All nodes created from user input are (directly or
indirectly) children of Root and are contained between BOS and EOS.

Traditional parsing is a batch process: an entire file is fed through a parser and a parse

tree is created from it. Incremental parsing, in contrast, is an online (i.e. interactive)

process: it parses text as the user types and continually updates a parse tree. In other

words, incremental parsing allows an editor to re-parse a program after every keypress,

resulting in an always up-to-date parse tree, which can then be used for semantic analysis

or syntax highlighting. A number of incremental parsing algorithms were published

from the late 70s [33, 37, 49, 65] to the late 90s, gradually improving efficiency and

flexibility [53, 26]. The last major work in this area was done in 1998 by Wagner [88]

who defined a number of incremental parsing algorithms. The parser used in this thesis

is based on his LR-based incremental parser which has two major benefits: it handles the

full class of LR(k) grammars; and has formal guarantees that the algorithm is optimal

(i.e. the number of steps needed to integrate user changes into an existing parse tree is

minimal). Furthermore, Wagner presents an algorithm for incremental lexical analysis,

improving on works such as [29, 4, 5, 27]. The incremental lexer in this thesis is based on

Wagner’s, although diverges from his implementation in some of its finer details. This

section gives a brief overview of incremental lexing and parsing, while Sections 2.5 and

2.6 explain them in more detail.

An incremental parser and lexer both operate on a parse tree. Parse tree nodes are

either nonterminals (representing rules in the grammar) or tokens (representing terminal

symbols). Nonterminal nodes are immutable (i.e. their type cannot change) and have zero

or more ordered child nodes (which are not immutable and can be updated). Tokens have

a type (e.g. ‘int’) and a value (e.g. ‘3’) and are mutable. Figure 2.5 shows an example of

a parse tree and Figure 2.6 gives an overview of the attributes and methods of a parse

tree node.
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value: String
The text value of the token represented by this node. None if the node is a
nonterminal.

symbol: Symbol
The lookup symbol of this node. Returns the rule name if the node is a nonterminal,
or the terminal type if the node is a token.

state: int
The state in which this node was pushed onto the parse stack.

changed: bool
True if this node was changed since the last re-parse.

nested_changes: bool
True if there are unparsed changes within this node’s subtree.

exists: bool
Determines whether this node exists in the current version of the tree.

__len__() -> int
Overloaded function used by len. Returns the character length of this node’s value.

left_sibling(version: int) -> Node
This node’s left sibling in the specified version. Refers to the current version if no
version is specified. Returns None if the node is the last child.

right_sibling(version: int) -> Node
Like left_sibling, but returns None if the node is the first child.

previous_token() -> Node
Returns the earliest node representing a token that precedes this node.

next_token() -> Node
Returns the earliest node representing a token that succeeding this node.

update(t: Token)
Update this node’s token information (i.e. value, lookahead, lookback) using the
given token.

text_length(version: int) -> int
Returns this node’s textual yield. If the node is a nonterminal this is the sum of
the text-length of all its children.

Figure 2.6: Overview of some of the attributes and methods of a parse tree node. The version
argument refers to a specific version of the parse tree as described in Section 2.6.1.
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When the user types, the incremental lexer first either creates, or updates, tokens in the

parse tree. The lexer considers where the cursor is in the tree (i.e. where the user is

typing) and uses lookahead knowledge stored in the nodes representing those tokens to

work out the affected area of the change. Newly created tokens are then merged back

into the tree. In the simple case where a token’s value, but not its type, was changed,

no further action is needed. In all other cases, the path from each changed token up to

the root is first marked with nested change flags which are then used by the incremental

parser to update the parse tree. The incremental parser starts at the beginning of the

tree and tries to re-parse all subtrees that contain changes. Assuming the user’s input

is syntactically valid, nonterminals are created or removed, as appropriate. Unchanged

subtrees are reused as is whenever possible. Since nonterminals are immutable, subtrees

which can’t be reused must be recreated from scratch.

Syntactically incomplete programs lead to temporarily incorrect parse trees. In such

cases, the incremental parser typically attaches new tokens to a single parent. When the

user eventually creates a syntactically valid program, the tree is rewritten.

2.5 Incremental Lexing

An incremental lexer can re-lex user edits and integrate the result into the current stream

of tokens, without having to lex the entire input from scratch. While the performance

gain is negligible, incremental lexing is a requirement for incremental parsing, as it allows

the parser to distinguish between old and new parts of a program so that it can only

re-parse those parts that have been added or altered. Wagner explains incremental lexing

in [88, p. 37]. However, he doesn’t show how tokens, once re-lexed, can be integrated back

into the parse tree. Sections 2.5.2, 2.5.3, and 2.5.4 summarise his explanations, while

Sections 2.5.5 and 2.5.6 show my own solution for merging re-lexed tokens back into the

parse tree. Section 2.5.7 then shows an optimisation for the merging algorithm from 2.5.6

that minimises the amount of new nodes that need to be created by cleverly overwriting

existing nodes within the parse tree.

2.5.1 The problem with traditional lexing

The input of a traditional lexer is a stream of characters. The lexer reads one character at

a time from the input and generates tokens from it. Tokens consist of (value, type) pairs

and are defined by lexing rules which consist of a name and a regular expression. For

instance, the lexing rules of a grammar that allows basic arithmetic could look like this:
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a) initial lex
a
var

=
eq

b
var

+
add

512
int

-
sub

64
int

b) after edit
a
var

=
eq

b
var

+
add

5-12
int

-
sub

64
int

c) after lexing
a
var

=
eq

b
var

+
add

5
int

-
sub

12
int

-
sub

64
int

Figure 2.7: An example showing that re-lexing changes to a program typically results in mostly
the same tokens. a) Token sequence of the program “a=b+512-64” when initially lexed. b) The
user edited the token 512 by inserting ‘-’ in-between ‘5’ and ‘12’. c) The new token sequence
after re-lexing the user change. Even though the whole whole program has been re-lexed, it
results in mostly the same tokens as before, with only token ‘512’ being split into two tokens ‘5’
and ‘12’ and a new token ‘-’ inserted in-between.

add : ’+’
sub : ’-’
int : [0-9]+
ws : [ \n]+
var : [a-zA-Z][a-zA-Z0-9_]*

When we generate a lexer from these rules and use it on the input “32 + 512” the lexer

returns the following sequence of tokens:

(‘32’, int) (‘ ’, ws) (‘+’, add) (‘ ’, ws) (‘512’, int)

When a user edits a program, most of their changes will be comparatively small given the

overall size of the source code. However, a traditional lexer will always re-lex the whole

program, even if most of it remains unchanged (see Figure 2.7 for an example).

2.5.2 Outline of an incremental lexer

The goal of an incremental lexer is to only re-lex those parts of a program that have been

changed. In an editor based on an incremental parser, edits to a program are directly

translated to the nodes in the parse tree representing tokens. For example, when the user

edits the token ‘512’, by inserting a ‘-’ in-between the digits ‘5’ and ‘12’, the value of

the node in the parse tree representing that token is updated to 5-12 and the node is

marked as changed. The incremental lexer then searches for all nodes that were marked as

changed, re-lexes them with a traditional lexer, and then merges the results back into the

tree. In other words, an incremental lexer detects which nodes need to be re-lexed and

handles the merging of the results back into the parse tree, while the creation of tokens

from the input is delegated to a normal lexer. In the remainder of this thesis we thus use

the term lexer to describe the tokenisation of user input, and the term incremental lexer

when referring to the algorithms for the detection and merging of changes.
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// Lexing rules
cls: "class"
as: "as"
chr: "[a-z]" a

chr
c
chr

l
chr

as
as

x
chr

y
chr

lookahead=1

lookahead=4

Figure 2.8: An example for token lookahead showing some lexing rules on the left, and the
resulting tokens, when lexing the input ‘aclasxy’, on the right. The token ‘a’ has a lookahead
of 1. This is because, the lexer had to read one additional character to make sure that token
doesn’t also match the type as. However, since the following character is ‘c’, the lexer produced
the token ‘a’ with type chr. The next token, ‘c’ has a lookahead of 4, because the lexer had to
read all the way up to ‘x’, before it could decide that it wasn’t possible to lex the longer match
‘class’ of type cls. All other tokens have lookaheads of 0.

When a token is changed, it is not uncommon that this change affects other tokens before

and after the change, which then also have to be re-lexed. We call such tokens dependent

tokens. To re-lex a changed token appropriately, we first have to find the furthest token

before the changed token, that is dependent on it. The node that represents that token is

where re-lexing starts. From here, the incremental lexer starts producing new tokens from

processing nodes in the parse tree. Re-lexing only stops, if a token was re-lexed to itself

(i.e. the new token’s value and type match exactly the node that it was produced from).

Afterwards, the new tokens are merged back into the parse tree, overwriting all nodes

that were processed during re-lexing. To compute dependent tokens we use lookahead

and lookback values stored within each token, which is explained in the following two

subsections. The remainder of this section gives some examples of the re-lexing process

and shows an algorithm for optimally merging tokens back into the parse tree.

2.5.3 Token lookahead

The lookahead of a token is the number of characters following that token that the

lexer had to inspect before deciding that the token is complete. Lexers typically try to

find the longest match when tokenising a program. To verify that a generated token is

indeed using all available characters matching its type, the lexer needs to scan characters

exceeding the length of the token. For example, a lexer that knows about integer values

(e.g. [0-9]+) that is given the program ‘512+64’, would produce ‘512’ as the first token.

However, to confirm that ‘512’ is the longest match, it will have to scan ‘+’ as well. But

since there is no lexing rule describing a token ‘512+’, the lexer returns ‘512’ with a

lookahead of 1. In most programming languages, tokens typically have a lookahead of

either 0 (e.g. brackets) or 1 (e.g. identifiers). However, larger lookaheads are possible as

the example in Figure 2.8 shows.
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a
chr

c
chr

l
chr

as
as

x
chr

y
chr

1

3

2

1

Figure 2.9: Lookback values for the example in Figure 2.8. The token ‘c’ has a lookback of 1,
because it can be reached by ‘a’. This means that changing ‘c’ would result in ‘a’ being re-lexed
as well. Since the lookahead of ‘c’ reaches all the way to ‘x’, the lookback values of tokens ‘l’,
‘as’, and ‘x’ all point back to ‘c’. This means that changing any of them, would require re-lexing
to start from ‘c’.

Using lookahead values we can determine where re-lexing has to start after a change,

by scanning all tokens before that change and checking if their lookahead value reaches

the changed token. In other words, if the lookahead value of a token a is greater than

the character distance between a and another token b, then a depends on b and needs

to be re-lexed when b is changed. For example, if we assume that in Figure 2.8 the user

changes the ‘x’ into an ‘s’, then instead of just re-lexing ‘x’, we need to start re-lexing at

token ‘c’, since its lookahead reaches ‘x’, resulting in a new token ‘class’.

Unfortunately, lookahead values on their own are too inefficient to find all dependent

tokens of a change. Lookahead can only tell us if a token a depends on a token b. However,

when changing a token b we need to find the furthest token a that depends on b. In order

to make sure that there are no further dependent tokens, we need to scan all tokens from

b up to the beginning of the program. Instead, we need a method that, given a changed

token b, tells us how far back we need to go, without scanning the entire file in the worst

case scenario. This can be achieved by converting lookahead values into lookback counts.

2.5.4 Lookback counts

The lookback value of a token b defines its distance in tokens to the furthest token a

that depends on b. It is used to determine how far back re-lexing needs to start when

a token was changed by the user. It can be calculated and updated incrementally from

the lookahead values of the re-lexed tokens, immediately after they have been merged

back into the parse tree. The algorithm is shown in Listing 2.2. Figure 2.9 shows the

calculated lookback values for the example from Figure 2.8.

The algorithm starts with the token where re-lexing was started as input and iterates over

the following tokens while assigning lookback values to them. The currently processed

token is n. The variable la_list stores (lookahead, count)-tuples for each token that
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1 def update_lookbackW(n: Node):
2 la_list: List[int, int] = []
3 while type(n) is not EOS:
4 la_list = remove(la_list)
5

6 newlookback: int = max_count(la_list)
7 if not was_relexed(n) and \
8 n.lookback == newlookback:
9 break

10 n.lookback = newlookback
11

12 # advance step
13 c: int = len(n.value)
14 la_list = advance(la_list, c)
15

16 # add step
17 la_list.append((n.lookahead, 1))
18

19 n = n.next_token()

20 def removeW(la_list: List[(int, int)]):
21 new: List[int, int] = []
22 for la, count in la_list:
23 if la > 0:
24 new.append(la, count)
25 return new
26

27 def advanceW(la_list, c: int):
28 new: List[int, int] = []
29 for la, count in la_list:
30 new.append(la - c, count+1)
31 return new
32

33 def max_countW(la_list: List[(int, int)]):
34 maxc: int = 0
35 for la, count in la_list:
36 if count > maxc:
37 maxc = count
38 return maxc

Listing 2.2: A Python version (with type annotations) of Wagner’s algorithm for calculating
lookback counts from lookahead values. The algorithm is run after re-lexing has finished and
takes as input the token where re-lexing was started. It then iterates over all re-lexed tokens and
updates their lookback values. The algorithm stops if it encounters a token that wasn’t re-lexed
and whose lookback value hasn’t changed. Note that, since tokens are represented by nodes in
the parse tree, the input of this function is a node.

was processed, where the continuously updated count holds the distance in tokens that

the lookahead value spans. For each new token that is processed, its lookahead value

is added to la_list, and count is initialised with 1 (line 17). Each entry in la_list

represents a preceding token that has lookahead into n. Each time another token is

processed, its text-length is subtracted from all entries in la_list and count is increased

by 1 (line 27–31). If an entry’s lookahead reaches 0, it is removed from the list (lines

20–25). This way la_list only ever contains entries which can reach the current token n.

The maximum count value within la_list defines the furthest preceding token from n

that has lookahead into n, and thus defines n’s lookback value (line 10). The algorithm

updates the lookback values of tokens, until it processes a token that wasn’t previously

re-lexed and whose lookback value remains unchanged (lines 7–9).

To help the understanding of the algorithm, the following applies it to the example from

Figure 2.8, assuming all tokens have just been re-lexed. In this example la_list also

stores the token values to show which token each entry belongs to, though this is not

necessary in the actual algorithm. We start the function with token ‘a’ as an argument.

Since la_list is empty the remove step (line 4) does nothing and newlookback (and

thus a’s lookback) is set to 0. la_list is still empty, so the advance step (lines 13–14)

also has nothing to do. Next we add the current token’s lookahead value to la_list and

initialise count with 1 (line 17). The following shows the elements of la_list in form of

a table, though in the algorithm the data structure is a list of tuples:
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Token Lookahead Count

a 1 1

The next processed token is ‘c’. Since none of the entries’ lookahead value is 0, no entry

is removed from la_list (line 4). However, newlookback is set to the maximum count

value, which is 1 (line 6). At this point we check if we are already done, which would

be the case if the current token hasn’t been previously re-lexed and its lookback value

already matched the calculated one (lines 7–9). But since ‘c’ was re-lexed, we continue

and set its lookback to 1 (line 10). Now we advance the list by increasing all count values

by 1 and reducing all lookahead values by the current token’s text-length (lines 13–14).

Afterwards we add the current token’s lookahead value to the list (line 17), resulting in:

Token Lookahead Count

a 0 2

c 4 1

In the next iteration we process token ‘l’. The remove step removes token ‘a’ from the

list since its lookahead is now 0 which means it doesn’t reach any of the following tokens.

Again, we assign the maximum count value, 1, as lookback to token ‘l’. After advancing

la_list and adding l’s lookahead, we get:

Token Lookahead Count

c 3 2

l 0 1

We now process ‘as’. In the remove step we immediately remove ‘l’ again and assign

lookback value 2 to ‘as’. After advancing and adding, la_list changes to:

Token Lookahead Count

c 1 3

as 0 1

Next we process ‘x’. First we remove ‘as’ from the list during the remove step. Then we

assign a lookback value of 3 to x. After advancing and adding we get:



Chapter 2. Background 24

1 def inclexWb(n: Node):
2 start: Node = find_relex_start(n)
3 temp: Node = start.previous_token()
4 processed: List[Node] = []
5 generated: List[Token] = []
6 lenp = leng = 0
7 while True:
8 old: Node, new: Token = lexer.next_result()
9 if n has been re-lexed :

10 if lenp == leng and old == new:
11 break
12 processed.append(old)
13 generated.append(new)
14 lenp += len(old)
15 leng += len(new)
16 merge_back(iter(processed), iter(generated))
17 update_lookback(temp.next_token())

18 def find_relex_startWb(n: Node):
19 for i in range(n.lookback):
20 n = n.previous_token()
21 return n

Listing 2.3: Simplified algorithm for incremental lexing. The function inclex is called on the
token that was edited. We start by using its lookahead to find the furthest affected token, where
lexing needs to begin (line 2). The lexer then generates new tokens from the nodes in the parse
tree and stores them, along with the nodes that were processed during lexing, in two separate
lists (lines 12-13). Lexing stops when a node is re-lexed to itself, i.e. the new token has the same
type and value as the node it was produced from and their offsets align (Line 10). Afterwards,
the new tokens are merged back into the parse tree (line 16). To update lookbacks we need to
store the node before re-lexing started (line 3), since the starting node may have been replaced
during the merge.

Token Lookahead Count

c 0 4

x 0 1

Finally, we reach the token y. In the remove step we remove both ‘c’ and ‘x’, resulting

in an empty la_list and newlookback being 0. Assuming that the token ‘y’ wasn’t

re-lexed in the previous edit and its current lookback value is already 0 the algorithm

would end here. If, however, ‘y’ has either been re-lexed or its lookback doesn’t match

newlookback, the algorithm would have to continue updating the lookbacks of any tokens

following ‘y’, until this check succeeds or reaches the end of the program.

2.5.5 Re-lexing all affected tokens

Using the lookback values we can now easily find all preceding nodes that need to be

included in the re-lexing phase. After finding the furthest preceding node that is affected,

the incremental lexer starts re-lexing at that node’s position. As a minimum, the lexer

re-lexes all nodes up to and including the edited token. However, it may continue re-lexing

as long as this leads to new tokens being generated. It only stops, if it encounters a node

that doesn’t change after being re-lexed. A simplified algorithm for incremental lexing,
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based on Wagner’s description, is shown in Listing 2.3. The incremental lexer differs

from Wagner’s, in that during re-lexing it builds two lists, one storing all nodes that were

processed, and one storing all tokens that were generated. These are later used to merge

the generated tokens back into the parse tree.

Most edits, when being re-lexed, lead to one of two scenarios: either more tokens have

been generated than nodes were processed, or more nodes have been processed than

tokens were generated. The former typically occurs when a node is split into two or more

tokens. The latter happens when two (or more) nodes are combined to a single token.

A third, trivial scenario is the editing of a token’s value without causing a type change,

which does not require any further action. The following example shows some input

before and after re-lexing, where the user changed the token ‘a32’ into ‘a+32’, resulting

in the splitting up of the node representing that token:

before x
var

=
eq

a+32
var

-
sub

64
int

after x
var

=
eq

a
var

+
add

32
int

-
sub

64
int

processed

generated

When the token ‘a32’ is edited, re-lexing starts at its position, since its lookback value

is 0. Re-lexing stops as soon as the incremental lexer processes ‘-’, which is re-lexed to

itself, and thus means that from here on re-lexing doesn’t lead to any more changes. The

next example shows the inverse operation of the previous example, where the user deletes

the ‘+’ again, resulting in the merging of two nodes:

before x
var

=
eq

a
var

32
int

-
sub

64
int

after x
var

=
eq

a32
var

-
sub

64
int

processed

generated

When a token is deleted, the incremental lexer uses its left neighbour to initialise re-lexing.

Here, deleting ‘+’ means re-lexing starts with ‘a’. Since a’s lookback is 0, no further

tokens are included in the re-lexing phase. Lexing stops at ‘-’, as re-lexing it results in

the same type as before.
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1 def merge_backD(processed: Iter[Node], generated: Iter[Token]):
2 # insert new nodes into tree
3 for new: Token in generated:
4 old: Node = processed.next()
5 if old is not None:
6 old.update(new) # overwrite value/type/etc with new token data
7 last = old
8 else:
9 # insert remaining generated tokens into parse tree

10 insert Node(new) immediately after last
11 last = new
12

13 # delete left over processed nodes from parse tree
14 while True:
15 old: Node = processed.next()
16 if old is not None:
17 remove(old)
18 else:
19 break

Listing 2.4: Merging re-lexed tokens back into the parse tree. The function takes iterators over
the processed nodes and generated tokens as input. It then iterates over all generated tokens and
uses them to overwrite the processed nodes with (lines 3–7). If there are no processed nodes left
to overwrite, the remaining generated tokens are inserted afterwards (lines 8–11). If there are no
generated tokens left, all remaining processed nodes are deleted (lines 13–18). For simplicity we
assume that iterators return None instead of raising an exception after the last element has been
returned.

2.5.6 Updating the token sequence

Although it is not explicitly explained, Wagner’s description suggests that his algorithm

simply removes re-lexed nodes and replaces them with the results from the lexer, and

then relies on top-down reuse (see Section 2.8.2) to recover and reuse old nodes. The

following presents a, to the best of my knowledge, novel approach of merging re-lexed

tokens back into the parse tree, that can be used to optimise node reuse during re-lexing.

After the incremental lexer has re-lexed all nodes, it has produced two lists: one containing

all processed nodes from the parse tree; and another containing newly generated tokens.

In the next step, the newly generated tokens need to be inserted into the parse tree,

replacing all processed nodes in the process. However, instead of removing all old nodes

and then inserting the new tokens in their place, it is more memory efficient to overwrite

existing nodes first and then remove any remaining nodes or insert any remaining tokens.

Listing 2.4, shows an algorithm that updates a token sequence by overwriting processed

nodes with the newly generated tokens. The algorithm can be split up into three scenarios

which are described as follows.
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Only a single token was affected

In many cases, when a program is edited, the change only affects a single token. For

example, if only the value of a token is updated, e.g. changing a number ‘2’ to ‘23’, no

other token need to be re-lexed. Also, since the type of the token remains the same, it is

not necessary to re-parse the program. However, if the type of the token was changed,

e.g. changing ‘2’ to ‘a2’ may update its type from int to var, a re-parse of the change is

required.

Inserting tokens

After a node has been split into multiple tokens, in order to update the token sequence, the

algorithm from Listing 2.4 overwrites the processed nodes one by one with the generated

tokens. If at the end there are no more nodes left to overwrite, new tokens are inserted.

In the first example from Section 2.5.5, where a token ‘a+32’ was re-lexed into 3 separate

tokens, we thus first overwrite ‘a+32’ with ‘a’. Since that was the only processed node,

there are no more nodes left to overwrite, so the remaining tokens ‘+’ and ‘32’ are inserted

after ‘a’, as illustrated below:

x
var

=
eq

a+32
var

-
sub

64
int

a
var

+
add

32
int

overwrite insert

Removing tokens

When multiple nodes are combined into a single token, the token sequence is updated by

overwriting all processed nodes with the generated tokens. If all generated tokens have

been merged this way, the remaining processed nodes are removed from the parse tree.

In the second example from Section 2.5.5, where the two tokens ‘a’ and ‘32’ were merged,

we first overwrite the old node ‘a’ with ‘a32’. Afterwards, the remaining processed node,

‘32’, is deleted:

x
var

=
eq

a
var

32
int

-
sub

64
int

a32
var delete
overwrite
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Figure 2.10: Two examples showing how the simple merge algorithm from Listing 2.4 integrates
re-lexed tokens back into the parse tree. Since the algorithm doesn’t take into account from
which old node a new token was generated, it sometimes merges new tokens with a different
node than they were created from. This results in more type changes than necessary and may
invalidate any annotations stored on that node. a) The user has made two edits (shown in green)
which were re-lexed in one go. We can see that the node ‘+5’ (formerly ‘+’) is overwritten with
‘-’. A new ‘+’ token is then later inserted at the end of the merge process. b) The user has made
a deletion and an insertion, which leads to ‘+5’ (formerly ‘+’) being overwritten by ‘56’ forcing it
to update its type. If it were to be overwritten by ‘+’ only the value would need changing.

2.5.7 Improving the merging algorithm

The algorithm shown in Listing 2.4 has a small downside: since it doesn’t know which

new tokens were produced from which processed nodes, it sometimes overwrites nodes in

a suboptimal order. The problem is illustrated in Figure 2.10.

We can minimise the amount of node changes by splitting up the generated tokens and

processed nodes into groups and merging each group separately. Each group matches a

set of generated tokens with the processed nodes they were constructed from. This way

we avoid that generated tokens in one group can overwrite processed nodes in the other,

which leads to more opportunities of merging a generated token into the same node as

before. Figure 2.11 shows how the examples from Figure 2.10 are integrated when using

an improved merging algorithm.

The improved merging algorithm is shown in Listing 2.5. It introduces two new variables,

oldlen and newlen, which store the amount of characters that have been processed so

far, for processed nodes and generated tokens. A new group begins whenever the two

variables are equal. This allows it to align generated tokens more often with their old

counterpart, which reduces the amount of changes that require re-parsing. The algorithm

receives the (ungrouped) generated tokens and processed nodes as input. By monitoring

the total text-length of the nodes being processed, it can determine the range of each

group and use this information to decide whether a token needs to be inserted, or nodes

need to be removed or overwritten.
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Figure 2.11: An example showing an improved merging algorithm that splits up generated
tokens into groups and merge them separately. a) Since the merging of ‘3-2’ was done separately,
we can overwrite ‘+5’ (formerly ‘+’) with ‘+’, reverting it back to its old value from before the
edit. b) Whereas in Figure 2.10 ‘+5’ was overwritten with ‘56’, and ‘6’ was deleted, the improved
version allows us to overwrite both, and only having to update their values.

1 def merge_backD(generated: Iter[Token], processed: Iter[Node]):
2 old: Node = processed.next() # returns the next processed node or None
3 new: Token = generated.next()
4 newlen = oldlen = 0
5

6 while old or new:
7 if oldlen >= newlen + len(new):
8 # Insert new token
9 insert Node(new) immediately after last

10 last = new
11 newlen += len(new)
12 new = generated.next()
13 elif oldlen + len(old) <= newlen:
14 # Remove processed node
15 remove(old)
16 oldlen += len(old)
17 old = processed.next()
18 else:
19 # Overwrite old node
20 oldlen += len(old)
21 newlen += len(new)
22 old.update(new)
23 last = old
24 new = generated.next()
25 old = processed.next()

Listing 2.5: Improved algorithm for merging re-lexed tokens, which divides generated tokens
into groups. This reduces the amount of changes necessary, when integrating newly generated
tokens into the parse tree. When a node is re-lexed into multiple new tokens, the algorithm first
overwrites the old node with the first generated token (lines 19–25), and then immediately inserts
the remaining tokens afterwards (lines 7–12). Similarly, if multiple nodes were combined into a
single token, the algorithm overwrites the first of the nodes with the new token (lines 19–25),
and then immediately deletes any excess nodes from the parse tree (lines 13–17).
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2.6 Incremental parsing

In order to create an incremental parser, we first take a traditional parser and modify it,

so that it takes as input a parse tree with user changes. From this input the incremental

parser then generates a new parse tree by reordering the changes within the old parse tree

according to the grammar. The parser is then optimised, so that it can reuse unchanged

subtrees from the previous parse tree without having to re-parse them. This reduces

the amount of work the parser has to do on each re-parse which greatly improves its

performance. Sections 2.6.1 to 2.6.3 summarise Wagner’s descriptions for creating an

optimal incremental parser. Section 2.7 discusses the versioning of parse trees and fills in

some details which Wagner only touches upon. Section 2.8 explains another of Wagner’s

optimisations, node reuse, and discusses two minor problems in one of his algorithms and

how they can be fixed. Section 2.9 evaluates incremental parsing performance compared

to traditional parsing.

2.6.1 Operating on parse trees

When changing a parser to take a parse tree as input, the process of parsing that input is,

at first, fairly similar to that of a traditional parser. The only difference is that, instead

of a stream of tokens, an incremental parser processes a tree of nonterminals and tokens.

An (unoptimised) incremental parser then simply extracts all terminal symbols from the

tokens in the parse tree and processes them just like a traditional parser would. We

can do this by simply traversing the parse tree in a depth-first order. Nonterminals are

processed by breaking them down and processing their children. Tokens are parsed as in

a traditional parser. When the parser reaches an accept state after all tokens have been

parsed, a new parse tree can be found on top of the stack. When the parser reaches an

error state, error recovery is invoked which is discussed in Chapter 3. Listing 2.6 shows a

simplified version of Wagner’s parsing algorithm that takes a parse tree as its input1.

Following Wagner’s terminology, we call the new parse tree being constructed the current

version, while the parse tree that was used as input is referred to as the previous version.

At the moment these two parse trees are, apart from their tokens, completely separate.

However, with optimised incremental parsing (Section 2.6.2) and node reuse (Section 2.8)

the previous and current version of the parse tree may share entire subtrees between each

other.
1Note that in this version parsing states are stored on the nodes that are pushed onto the parsing

stack, instead of the stack itself. While this doesn’t have any performance benefits, storing states on
nodes slightly simplifies the code examples and makes life a bit easier later on in Section 3.4
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1 state: int = 0
2 stack: List[Node] = []
3

4 def incparseW(bos: Node):
5 la: Node = next_lookahead(bos)
6 while True:
7 if la is a terminal :
8 action = parsetable.lookup(state,
9 la.symbol)

10 if action is Shift :
11 shift(la, action)
12 la = next_lookahead(la)
13 elif action is Reduce :
14 reduce(action.production)
15 elif action is Accept :
16 return True
17 elif action is Error :
18 la = recover() # error recovery
19 else: # la is a nonterminal
20 la = left_breakdown(la)

21 def left_breakdownW(la: Node) -> Node:
22 if len(la.children) > 0:
23 return la.children[0]
24 else:
25 return self.next_lookahead(la)
26

27 def next_lookaheadW(la: Node) -> Node:
28 while la.right_sibling(prev) is None:
29 la = la.get_parent(prev)
30 return la.right_sibling(prev)
31

32 def shiftW(la: Node, s: Shift):
33 stack.append(la)
34 state = la.state = s.state
35

36 def reduceWb(p: Production):
37 children: List[Node] = []
38 for i in p.length():
39 children.append(stack.pop())
40 state = stack[-1].state
41 n = Node(p.symbol, children)
42 goto = parsetable.lookup(state,
43 p.symbol)
44 state = goto.state
45 stack.append(n)

Listing 2.6: Simplified Python version of Wagner’s implementation of an LR(1) parser using
a parse tree as input. The function incparse traverses the parse tree, parsing all tokens until
the input is either accepted or rejected. The function next_lookahead is used to retrieve the
next lookahead node from the previous parse tree (lines 27–30). If that node is a nonterminal,
its subtree is broken down using left_breakdown to retrieve its leftmost token (lines 21–25). If
the lookahead is a terminal symbol, the next parse action is looked up in the parse table (line
8). Afterwards, next_lookahead is used again to get the next lookahead to be processed. The
function next_lookahead uses the global variable prev to reference the previous version of the
parse tree. Though not strictly necessary at this stage, this is needed later to receive the correct
lookaheads once subtrees are being reused as described in Section 2.8.

2.6.2 Optimised incremental parsing

When the parser re-parses a parse tree containing user changes, the resulting new parse

tree is often very similar to the previous version of the parse tree, with many subtrees

being identical (see Figure 2.12 for an example). In fact, in practice most user changes

only affect a fraction of the entire parse tree and most subtrees stay the same after a

re-parse.

An optimised incremental parser attempts to reuse as many subtrees as possible during a

re-parse. In general, a subtree can be reused if it does not contain any changes. When

the user edits a parse tree, all nodes leading from the root down to those edits are marked

with a nested changes flag. The incremental parser can follow those markings to re-parse

the user changes. If a subtree does not contain any changes, the incremental parser

tries to reuse it, since re-parsing it typically results in the same subtree. Listing 2.7
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Figure 2.12: An example showing that when we re-parse changes within a parse tree, some
re-parsed subtrees in the new parse tree (right) are identical to their equivalent in the previous
parse tree (left). New nodes are coloured orange, nodes leading to changes are coloured green.
The user inserted the new text ‘*3’, which after re-lexing resulted in the parse tree on the left.
After re-parsing, the subtree E1 in the previous parse tree has been re-parsed to the exact same
subtree as before (E3).

shows a simplified version of Wagner’s optimised incremental parsing algorithm. Note

that this implementation requires additional information in the parse table which allows

nonterminals to be used as lookups [88, p. 62]. Alternatively, we can retrieve the left-most

terminal symbol within a subtree and use it as lookup to decide if a nonterminal is

shiftable, though this is less efficient than using an extended parse table.

While the main requirement for a reusable subtree is that it doesn’t have any changes,

this does not always guarantee that it can be shifted. Sometimes changes located before

the unchanged subtree changed the parse state in such a way that the unchanged subtree

is not valid any more, and so it has to be broken down and re-parsed (Listing 2.7, lines

35–36). In some cases the unchanged subtree is invalid because there are still outstanding

reductions on the parse stack, which need to be applied first (Listing 2.7, lines 33–34).

After all reductions have been applied, the algorithm can attempt to shift the subtree

again.

If a subtree can be shifted, it is done so optimistically. This means that we do not verify

upfront if the subtree is truly valid, apart from checking if its nonterminal symbol is

valid in the current state. Subtrees are created from reductions, which are based on the

next lookahead. In other words, the reduction of a subtree is dependent on its following

terminal symbol. If that symbol changes, the reduction is likely to change as well. In

order to verify if a subtree can be shifted, we have to check if the next lookahead leads to

the same reduction as in the last parse. Wagner’s incremental parser, however, does this
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1 state: int = 0
2 stack: List[Node] = []
3

4 def incparseW(bos: Node):
5 verifying: bool = False
6 la: Node = next_lookahead(bos)
7 while True:
8 if la is a terminal :
9 action = parsetable.lookup(state, la.symbol)

10 if action is Shift :
11 verifying = False
12 shift(la, action)
13 la = next_lookahead(la)
14 elif action is Reduce :
15 reduce(action.production)
16 elif action is Accept :
17 return True
18 elif action is Error :
19 if verifying:
20 right_breakdown()
21 verifying = False
22 else:
23 la = recover()
24 else: # la is a nonterminal
25 if la.nested_changes:
26 la = left_breakdown(la)
27 else:
28 action = parsetable.lookup(state, la.symbol)
29 if action is Shift :
30 verifying = True
31 shift(la, action)
32 la = next_lookahead(la)
33 elif action is Reduce :
34 reduce(action.production)
35 elif action is Error :
36 la = left_breakdown(la)

Listing 2.7: Simplified Python version of Wagner’s incremental parser, optimised to allow the
reuse of subtrees. If a subtree doesn’t contain changes it can be reused if the parse table determines
that it is shiftable (line 28–32). In some cases it is necessary to apply some outstanding reductions
first, before the subtree can be shifted (lines 33–34). Otherwise the unchanged subtree needs
to be broken down (lines 35–36). When a subtree is shifted the algorithm enters a verification
phase. If during an error occurs during this phase, the previously shifted subtree is broken down
using right_breakdown (lines 18–21). The verification phase ends as soon as a terminal symbol
is shifted (line 11).
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1 def right_breakdownW():
2 node = stack.pop() # remove optimistically shifted subtree
3 while node is nonterminal :
4 for c in node.children:
5 action = parsetable.lookup(stack[-1].state, c.symbol)
6 shift(c, action)
7 node = stack.pop()
8 action = parsetable.lookup(state[-1].state, node.symbol)
9 shift(node, action) # leave final token on stack

Listing 2.8: Optimistically shifted subtrees can be reverted by breaking them down to reveal
their rightmost token. This can be done by removing the subtree from the parse stack and
shifting all of its children back onto the stack. As long as the top of the stack is a nonterminal,
this process is repeated. Since this only breaks down the rightmost child, preceding subtrees are
still reused.

check lazily: reusable subtrees are shifted optimistically, and their validity is confirmed

later. For this reason, whenever the parser shifts a subtree it enters a verification phase

(Listing 2.7, line 30). This phase ends when the next lookahead can be shifted, which

confirms the optimistic shift (Listing 2.7, line 11). If, however, an error occurs during the

verification phase, then the optimistic shift was invalid and needs to be reversed and the

subtree broken down. This can be done by simply removing the shifted subtree from the

parse stack again and parsing its contents. However, even though the subtree couldn’t be

shifted, it may contain other subtrees which are still valid and which we don’t want to

re-parse again. We thus only have to break down the subtree to its rightmost token, since

its terminal symbol confirms any other shifts within the subtree (see Figure 2.13 for an

example). In Wagner’s incremental parser this is done by the function right_breakdown,

which is shown in Listing 2.8.

2.6.3 Whitespace

In most programming languages, whitespace is only important inasmuch as it separates

other tokens. Traditional lexers therefore consume and discard whitespace. For an editor

based on an incremental parser this is unacceptable, as we need to maintain whitespace

in the parse tree to accurately render the user’s input (see Section 5.2.3). A solution for

whitespace handling is suggested by Wagner [88, p. 129], which we can adopt with minor

variations.

When a grammar is configured to have implicit whitespace2, the grammar is automatically

mutated such that references to a production rule WS are inserted before the first, and

after every, terminal in the grammar. Although the user can define WS to whatever they

want, a common example of what is added to the grammar and lexer is as follows:
2In Eco this can be achieved by setting the %implicit_whitespace=true flag within the grammar.
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Figure 2.13: An example for an optimistically shifted subtree, which needs to be reverted
because it couldn’t be verified. Before parsing, the user changed a token ‘e’ to ‘f’, which causes
the parse tree to be re-parsed. During re-parsing the subtrees A and D can be optimistically
shifted. However, subtree D’s previous reduction depended on lookahead ‘e’ which has been
changed. During the verification phase, the changed token f results in an error. This means
that subtree D needs to be broken down. However, it contains another subtree B, which has no
changes and whose reduction is already confirmed by ‘d’. We thus only need to break down D
to the rightmost token. After re-parsing, the changed token ‘f’ has caused some subtrees to be
re-parsed, while A and B were reused.

// Parser

WS : /* empty */

| WS "TABSSPACES"

| WS "RETURN";

// Lexer

TABSSPACES : "[ \t]+"

RETURN : "\n"

Although the resulting parse tree records WS nodes (which are used for rendering and for

ensuring cursor behaviour works as expected), they soon clutter visualisations of parse

trees to the point that one can no longer see anything else. In the rest of this thesis, WS

nodes are thus generally elided from parse tree visualisations.

2.7 History management

The storing and recovery of program changes is only a minor contribution in Wagner’s

thesis and thus its explanation is brief with many details left to the reader to fill in.

This section explains my approach to history management. Section 2.7.1 explains the

high level concept Wagner describes in his thesis. Section 2.7.2 explains how nodes can

be used to track their own changes which Wagner explains in [88, p. 21]. Section 2.7.3

explains my implementation for saving parse tree changes to the history as well as how

to efficiently switch between different versions of the parse tree, which is needed for the

implementation of undo and redo.
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2.7.1 Background

Most text editors provide undo/redo functionality by keeping track of all the changes

the user made since opening the document. The changes are stored as editing operations

(e.g. ‘insertion of text t at line x, column y’) which can be reversed (undo) or replayed

(redo) to get to earlier or later stages of the program. For example, if the user inserted

text the undo operation would delete that text again; redo would re-insert it.

In his thesis, Wagner proposes a different approach that keeps a history of the user

changes by storing the resulting parse tree after every change. These parse trees can then

be used to jump back and forth within the history of the program. Undoing a change

simply loads the parse tree from before that change. Redo loads the relevant parse tree

from a later history. Implemented naively, this would require a large amount of memory

to store all versions of the parse trees. Fortunately, when using an incremental parser, we

only need to store the difference from one parse tree to another. Thus when storing a

parse tree, only nodes that have been edited by the user or were altered by the parser

need to be saved. When a node is saved, it simply records any changes to it inside a log

on the node itself.

While the general idea is clearly explained in Wagner’s thesis, its implementation is only

partly shown. The following thus describes one approach of how this feature could be

implemented. First, each parse tree change is tagged with a monotonically increasing

global version number, which is incremented every time the parse tree is altered by the

user, and again after the changes have been re-parsed3. Even though for undo/redo it

would suffice to only store the version after parsing, we also need to store the intermediate

version (after editing but before parsing), which is later needed to recover from parsing

errors (see Chapter 3). For this reason executing an ‘undo’ will go back two versions in

the parse tree: one to undo parser changes; and one to undo changes made by the user.

2.7.2 Logging changes

Storing the changes of a node, as described by Wagner, is as simple as logging the node’s

values each time they are changed. First, each node gets a version attribute, which stores

the nodes current version, and a max_version attribute, which is the highest version

number of the node4. We then add a new dictionary log to all nodes which links (version,

attribute)-pairs to values, where version references a version of the parse tree.
3We need not worry about overflowing this value. A quick test revealed that it would take over a

billion years of continuous and rapid typing to create enough versions to fill 64 bits.
4This attribute is mainly used for performance reasons. Since the version of the parse tree can be

bigger than the node’s maximum version, this avoids having to iterate over all versions of the node to
find the maximum.
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before edit after edit/re-parse after undo

13
int

x13
id

13
int

Node

value: ‘13’
type: ‘int’
log: {
(1, ‘value’): ‘13’,
(1, ‘type’): ‘int’,
}
version: 1
max_version: 1

Node

value: ‘x13’
type: ‘id’
log: {
(1, ‘value’): ‘13’,
(1, ‘type’): ‘int’,
...
(3, ‘value’): ‘x13’,
(3, ‘type’): ‘id’,
}
version: 3
max_version: 3

Node

value: ‘13’
type: ‘int’
log: {
(1, ‘value’): ‘13’,
(1, ‘type’): ‘int’,
...
(3, ‘value’): ‘x13’,
(3, ‘type’): ‘id’,
}
version: 1
max_version: 3

Figure 2.14: A node’s log before and after editing, and after an undo. When a node is changed,
the changes are stored within the node’s dictionary log. Upon undo, old values can be retrieved
from that log to update the node’s attributes. The figure shows a node being edited and afterwards
reverted to its initial version. The first row shows the parse tree representation of the node; the
second row shows its object representation including some of its attributes.

When a node is changed or re-parsed, its version is updated and changed attributes are

saved to the log. Note that changing a node also updates the version of all of its parents

up to the root. This means that no node can have a bigger version than the root of the

parse tree, or in other words the root of the parser tree is always bigger than or equal to

any other node in the tree. There are many attributes that may need to be logged in

order to revert the parse tree to a previous state (e.g. besides the value and type, a token

also needs to store a pointer to its parent; nonterminal nodes are immutable and thus

don’t need to store their type, but instead need to keep a log of their children). Reverting

a node to an older version can then be achieved by simply reading the old values from

the log (see Figure 2.14) and reassigning the node’s attributes. Figure 2.15 shows an

example of a tree being edited and highlights how the versions of nodes change during

editing and re-parsing.

2.7.3 Implementation

Listing 2.9 shows the algorithms for storing and jumping between versions of a parse tree.

In order to store the current version of the parse tree we iterate over the entire tree using

the function save_tree. Each node that is new, was changed, or contains nested changes

is saved and its subtree is traversed further. If a subtree doesn’t contain any changes,

there is no need to traverse it and it can be skipped. Since the attributes that need to be
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1 def save_treeD(node: Node, version: int):
2 if node.has_changes() or node.new:
3 for c in node.children:
4 save_tree(c, version)
5 node.save(version)
6

7 def undoD(node: Node, target: int):
8 if node.version <= target:
9 return

10 for c in node.children:
11 undo(c, target)
12 node.load(target)
13 for c in node.children:
14 undo(c, target)
15

16 def redoD(node: Node, target: int, _from: int):
17 node.load(target)
18 if node.version > _from:
19 for c in node.children:
20 redo(c, target, _from)

Listing 2.9: Functions to save and reload parse trees. The function save_tree is called whenever
the parse tree changes through user edits or re-parses. It iterates over the current version of
the tree and stores all changed and new nodes. Undo and redo work by asking every node in
the parse tree (starting with the root) to load the targeted version. During undo, subtrees that
already have the target version can be skipped (line 8-9), since loading them would not lead to
any changes. We do, however, have to process a node’s children both before and after reverting it
(line 10-14) for reasons shown in Figure 2.16b. During redo we can skip child nodes, if reverting
the parent doesn’t change its version, i.e. its version is equal to or smaller than the parse tree
version we are reverting from (line 18).

saved and restored depend on the type of the node, each node type implements a method

save which takes care of storing all relevant attributes to the log (see Listing 2.10).

When the user uses undo to restore the program to an older version, the algorithm iterates

over all nodes in the parse tree (starting at the root) and restores all nodes whose version

number is bigger than the target version. Subtrees with a smaller version than the target

version don’t need to be traversed, as they don’t contain any changes that need reverting.

When a node is reverted we need to traverse its children twice, once before reverting

the node itself and a second time after it has been reverted. Since children may have

changed between versions it is otherwise possible to miss nodes if the list of children is

only traversed once (see Figure 2.16b for an example).

Redo works slightly different to undo. To revert back to a later version we iterate over

the tree and attempt to load the target version for each node. If the node doesn’t have

the target version in its log, it loads the next highest version instead. If the node was

reverted then its version attribute is now bigger than the version we started with. Only

then do we have to traverse its children. This effectively finds all nodes that were created
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1 class Terminal(Node):
2 def saveWb(self, version: int):
3 self.log[("symbol", version)] = self.symbol
4 self.log[("parent", version)] = self.parent
5 ...
6

7 def loadWb(self, version: int):
8 v = min(version, self.max_version)
9 while v not in self.log:

10 v -= 1
11 self.symbol = self.log[("symbol", version)]
12 self.parent = self.log[("parent", version)]
13 ...
14

15 def has_changesWb(self):
16 return self.changed or self.nested_changes

Listing 2.10: Each node type implements a method save which stores all attributes into the
node’s log. Older attributes can be reloaded via the method load. Reverting to version x finds
the maximum version y where y ≤ x since a) not every node contains every version (line 9-10) b)
one can ask a node to load a version that is bigger than its max_version (line 8).

or changed during the previous parse. Unlike undo, we cannot skip nodes that already

have the target version as that could lead to wrong parse trees (see Figure 2.16c for an

example).

2.8 Node reuse

In Section 2.6.2 we have seen how incremental parsing can reuse subtrees if they don’t

contain any changes, while changed subtrees need to be re-parsed. However, even the

re-parsing of subtrees containing changes, can often result in the same subtree as before

as Figure 2.17 shows. When logging the history of the parse tree, this can result in the

storage of identical data multiple times over, leading to unnecessary memory usage. The

problem gets worse, the more frequently we re-parse the tree, for example after every

keypress.

We can minimise this problem with node reuse, which identifies such subtrees and,

instead of generating new nodes, reuses nodes from the previous parse tree. In his thesis,

Wagner proposes two solutions to this problem: bottom-up and top-down node reuse.

Both solutions have weaknesses which cause them to miss some opportunities to reuse

nodes. However, they complement each other and when run together ‘restore virtually

every token that the user would consider unchanged’ [88, p. 53], according to Wagner.

Bottom-up reuse runs alongside the incremental parser and when a reduction occurs

reuses nonterminal nodes from the previous version of the parse tree if possible, instead
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Figure 2.15: Node versioning during editing and parsing operations of a parse tree. Any node
that was changed or whose subtree contains changes (green), or was newly created (orange), is
saved after each editing and each parsing operation. This updates their version numbers, which
are shown inside the nodes in the form of ‘v:#’. a) The user inserted some input. The parse tree
version was increased by 1, and all changed and new nodes stored their values in their log, tagged
with the current parse tree version. b) The parse tree was re-parsed which generated new nodes
and assigned some terminals to new parents. The changes have not been stored to the history
yet, so old nodes remain at the same version, while new nodes do no have a version yet. c) The
changes made by the parser have been stored within the nodes while the parse tree version was
increased to 3. Afterwards, the changed, nested_changes, and new attributes of all nodes are
reset. d) The user added more input and the changes are stored within the nodes, increasing
the parse tree version to 4. e) The changes have been re-parsed, creating some new nodes and
moving some old nodes around. The changes have not been stored yet. f) The parse tree version
was increased to 5 and all changes were stored within the nodes.
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(a)

(b)

(c)

Figure 2.16: An example showing how a naive implementation of reverting subtrees can lead to
a wrong parse tree. Parents pointing to their children is visualised via a black arrow. Children
pointing to their parent via a grey arrow. A child and parent pointing to each other, is visualised
by a black line (no arrow). Nodes that were reverted are coloured in blue. (a) Using the grammar
on the left for the input abc produces the middle parse tree. Inserting x between a and b results
in the parse tree on the right. (b) This example shows why during undo we need to traverse
children both before and after the parent has been reverted. Without it, reverting the parse
tree from version 4 to version 2, results in the children b and c still pointing to their parents
from version 4. When we only traverse children after reverting the parent, reverting E would set
its children to Y, X, and A. The last two already have version 2 and are not traversed further,
meaning that b and c are also not traversed and thus not reverted (note how they remain at
version 4). (c) This example shows why during redo we need to also traverse nodes that already
have the target version. When reverting E from version 2 back to 4, this sets its children to Y and
V. Since Y is at version 2, it is reverted also, setting its child to W. V and W, however, already are
at version 4. If we do not traverse them further, the children a, b, and c would not be reverted,
remaining at version 2, and pointing to their previous parents.
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Figure 2.17: An example of re-parsing a tree without node reuse. Since the subtree T2 had
changes, it needed to be re-parsed and couldn’t be optimistically shifted. However, re-parsing it
results in an identical subtree T3. Since all versions of parse trees are stored to its history, this
leads to unnecessary memory usage.

of creating a new one. Top-down reuse runs after parsing has finished and traverses all

newly created nonterminals and attempts to replace them with their counterpart from

the previous version of the parse tree, if one exists. It is important to note that while

bottom-up reuse prevents nodes from being created in the first place, top-down reuse

only replaces them after they have been created, though still before they are saved to the

history.

2.8.1 Bottom-up reuse

Bottom-up reusable nodes can be found during parsing whenever a reduction occurs.

Upon the reduction, we check if the children being reduced already have a parent in the

previous parse tree. If the type of the old parent is the same as the type of the reduction,

and all children share the same parent in both the previous and current version of the

parse tree, then the old parent can be reused. Wagner calls this unambiguous node reuse.

He also gives a more relaxed form of bottom-up reuse, called ambiguous node reuse which

doesn’t require all children to share the same parent; instead a single child whose old

parent matches the new reduction type is sufficient to reuse that parent. However, this

requires remembering which nodes have already been reused so that they are not reused

multiple times within a single parse. This can be achieved with a set, which we add

each node to that was reused, and which is reset on every re-parse. Though this is not

explicitly stated in Wagner’s thesis, note that when reused nodes are broken down via

right_breakdown they need to be removed from the set so that they can be reused in

any upcoming reductions when parsing continues.
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1 def ambig_reuse_checkW(prod: Symbol, children: List[Node]) -> Node:
2 for c in children:
3 if not c.new: # not a new node
4 old_parent: Node = c.get_parent(previous version )
5 if old_parent.symbol == prod and old_parent not in reuse set :
6 add old_parent to reuse set
7 old_parent.set_children(children)
8 return old_parent
9 return Node(prod, children)

Listing 2.11: To find a reusable nonterminal the algorithm iterates over all children that are
being reduced and checks their parent nodes from the previous version of the parse tree. If any of
the parents has the same production symbol as the current reduction and has not already been
reused, it is returned to the parser. Otherwise a new node needs to be created.

Figure 2.18: re-parsing user changes in a parse tree with bottom-up node reuse enabled. We
can see that both the nodes T2 and P2 could be reused by the incremental parser and didn’t need
to be recreated during their re-parse.

Since ambiguous bottom-up reuse is more effective in finding reusable nodes than un-

ambiguous node reuse, only the former is discussed here. Adding bottom-up reuse is

straightforward. Within the reduce method of the incremental parser, we replace the

creation of a new nonterminal node with a call to a function ambig_reuse_check that

aims to find reusable nodes using ambiguous bottom-up reuse. This function takes the

current production and the children that were popped from the stack, and returns a

parent node from the previous parse tree with the same production type, if one exists, or

returns a new node if not. Reusing a node and assigning new children to it will mark

that node as changed, which also causes all of its ancestors up to the root to have nested

changes. The implementation is shown in Listing 2.11 and Figure 2.18 shows the parsing

of a program with bottom-up node reuse enabled.
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1 def top_down_reuseW():
2 top_down_traversal(root node )
3

4 def top_down_traversalW(node: Node):
5 if node.changed and not node.new:
6 reuse_isomorphic_structure(node)
7 elif node.nested_changes or node.new:
8 for c in node.children:
9 top_down_traversal(c)

10

11 def reuse_isomorphic_structureWD(node: Node):
12 for i in range(len(node.children)):
13 current_child = node.children[i]
14 if i >= len(node.get_children(previous version )):
15 top_down_traversal(current_child)
16 continue
17 else:
18 previous_child = node.get_children(previous version )[i]
19 if current_child.new and not previous_child.exists and \
20 current_child.symbol == previous_child.get_symbol(previous version ):
21 replace_child(node, i, current_child, previous_child)
22 reuse_isomorphic_structure(previous_child)
23 elif current_child.nested_changes:
24 top_down_traversal(current_child)

Listing 2.12: Improved Python version of Wagner’s top-down reuse algorithm. Top-down reuse
runs after the parse tree has been fully re-parsed. It traverses the tree from top to bottom,
following all nodes that contain nested changes (lines 7–9). If a node has local changes (shown by
the changed attribute), this means that it has different children than in the previous version,
some of which could be newly created nodes. We then analyse the node’s children and compare
each with the child at the same index in the previous version of the parse tree (lines 19–20). If
their symbols are the same, the new child can be replaced with the old one (line 21). Afterwards,
the algorithm continues traversing the parse tree.

2.8.2 Top-down reuse

Even though bottom-up reuse can recover the majority of reusable nodes, some elude the

algorithm. As we have seen in Listing 2.11, in order for bottom-up reuse to find a reusable

node, it inspects the parents of the children being reduced. This means that empty

nonterminals (i.e. nonterminals without children, produced from ε-rules) can never be

found using bottom-up reuse. However, these nodes can be discovered and replaced using

top-down reuse. Top-down reuse runs after parsing is complete. It traverses the parse

tree from top to bottom and compares any newly created node with the node that shares

the same location in the previous version of the parse tree. If they both have the same

type (i.e. both have the same production symbol), then the new node can be replaced

with the previous one. Replacing a new node with a node from the previous version of

the tree means reassigning children from the new node to the old node and copying over

important attributes. A modified version of Wagner’s algorithm for top-down reuse is

shown in Listing 2.12.
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Figure 2.19: This example shows that nodes can have different numbers of children between
the previous and the new version of the parse tree. The node T2 has 3 children in the new parse
tree, but only one in the previous. This would result in a runtime error in Wagner’s original
algorithm when trying to access T2’s second child from the previous version. For this reason
we need to add an extra check in reuse_isomorphic_structure for cases where the previous
version of a node has less children that is currently has.

Wagner’s original algorithm [88, p. 75] has two problems. The first is that it assumes

that the previous and current version of a node always have the same amount of children.

Figure 2.19 shows that this is not always the case and using the original algorithm on

such nodes can lead to runtime errors. It is unclear if this is a flaw in Wagner’s algorithm

or a mistake introduced accidentally during the simplification of the code example in

his thesis, though the latter seems more likely. The improved implementation shown in

Listing 2.12 fixes this issue by adding an additional if-else-block (lines 14–17) to catch

cases where the previous version of a node has less children than the current version. In

those cases we simply skip the remaining children and continue to traverse the rest of the

tree (line 15).

The second problem is that the original algorithm only traverses the children of a node, if

that node has nested changes. However, new nodes can also contain subtrees with changes

in them, which need to be traversed to find all reusable nodes (see Figure 2.20). Even

though it is not explicitly stated in his thesis, I assume that in Wagner’s implementation

new nodes inherit the nested_changes value from their children when they are created.

For implementations where this is not the case, the algorithm in Listing 2.12 was changed

at line 7 to include new nodes in the traversal as well.

Note that reusing tokens from a previous version is not always possible depending on the

frequency in which an editor stores the parse tree’s history. Wagner describes the use

case for reusing tokens as a user removing a token from the tree and then immediately
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Figure 2.20: This example shows why it is necessary to also scan new nodes during top-down
traversal. Let’s assume the calculator grammar has been extended with optional whitespace
between terminals. After parsing the user edits, we get a new nonterminal node E2. Its subtree
contains nodes that were changed during parsing, including the newly created node WS2. Using
top-down reuse, this node can be replaced with its counterpart from the previous version. However,
this requires traversing the subtrees below new node E2.

re-entering it. In such cases top-down reuse can find the previous token and then replace

the new one. However, an editor may choose to store parse trees after each keypress,

creating two versions, one after the user edited the parse tree, and a second after it has

been re-parsed. Thus, when the user deletes a token, the change is immediately saved,

then re-parsed, and then saved again. If the user then re-enters that token, the parse

tree is saved yet again prior to re-parsing. By the time top-down reuse is called, we

are already 3 versions ahead and the newly inserted token will have already been saved

to the history, which means that replacing it with a previous token won’t lead to any

performance or memory gain.

2.8.3 Evaluation

In order to evaluate the effectivness of node reuse, I ran a small experiment, analysing

node usage for some small programs with and without node reuse. The results show that

even on small inputs these reuse algorithms are capable of saving up to 83% of nodes

from being recreated, depending on input and grammar. For example, typing out the

Python program from Listing 2.13a without node reuse leads to a total of 760 nodes

being created. Bottom-up reuse reduces this number by 63% to 284; top-down reuse

reduces those 284 nodes by another 47% down to 134. Together they save 83% of nodes

from being saved to the history. Typing out the Java program from Listing 2.13b without



Chapter 2. Background 47

class X:
def x():
pass

(a) Python program

class X {
public static void main(){
method();

}
}

(b) Java program

Listing 2.13: The two programs used to benchmark node reuse. Using bottom-up and top-down
node reuse saves 83% of nodes from being stored to history for the Python program. For the
Java program that number is slightly smaller, saving about 68%. While these examples are small
we can expect similar figures for larger programs as well.

node reuse generates a total of 1221 nodes. Bottom-up reuse reduces this number by 39%

down to 742; top-down reuse takes off another 47% down to 389 nodes. Together they

reduce the number of nodes being saved to history by 68%.

2.9 Performance evaluation

In order to assess the performance of incremental parsing I conducted an experiment

using the Java standard library. In this section I outline the methodology (Section 2.9.1)

and discuss the results (Section 2.9.2).

2.9.1 Methodology

Measuring incremental parsing performance is difficult as it depends on where the

program was edited before it is re-parsed. The challenge thus becomes how to make

enough plausible edits to a file so that we can obtain meaningful statistics. My approach

was to automatically edit a file in multiple locations and measure the average re-parse

time. The experiment was run on the Java 1.5 standard library using Eco’s incremental

parser implementation and a Java 1.5 grammar. The library consists of 6560 files totalling

222KLoc, ranging from 391 bytes (43LoC) to 200 Kbyte (5664LoC) in size.

First, each file was loaded into Eco and an initial parse tree created. The file was then

automatically edited by adding ‘1+’ to each assignment in the program (i.e. after every

‘=’), forcing the program to be re-parsed incrementally. For each edit I measured the

time needed to re-parse the changes and update the parse tree, excluding any processes

before and after parsing such as incremental lexing or top-down reuse. I then recorded

the average performance of all edits. If an edit lead to a parsing error, no more edits were

made to that file and only the results up to that point were recorded, as the performance

of further edits would be slowed down by error recovery.
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Figure 2.21: Diagram showing the performance of incremental parsing depending on program
size. The x axis shows the number of lines for each program measured, the y axis shows the
average time spent re-parsing edits within each program. The blue line shows the best fit function
for the data.

All experiments were run on an otherwise unloaded Intel Xeon E3-1240 v6 with 32GiB

RAM running Debian 9. The repeatable experiment can be found at https://github.

com/softdevteam/eco_benchmark.

2.9.2 Results

Figure 2.21 shows the results of the experiment. The conclusion is clear: the time taken

by the incremental parser correlates with the number of lines in a file. In other words,

the time to re-parse parts of a file is partly determined by the overall size of the file.

However, the increase is sub-linear: roughly speaking, doubling the size of the file slows

the incremental parser down by only 25%. The majority of files in the Java standard

library lie within the 1500LoC range where Eco is capable of re-parsing edits within 4-6ms,

and even files with over 4000LoC stay below 10ms. Even though humans can perceive

latency of as little as 2ms [58], these results are well within an acceptable range. Given

that Eco uses the standard Python interpreter to run, and that implementation efficiency

was not a particular goal, it is clear that implementations in faster languages would be

able to reduce this figure further. In summary, the results show that incremental parsing

can be used to parse programs after every keypress even for larger programs without

causing a significant increase in latency that hinders the editing in such environments.

The results include a few outliers of which three seem of particular interest, given that

their runtime is relatively high compared to other files with a similar amount of line

https://github.com/softdevteam/eco_benchmark
https://github.com/softdevteam/eco_benchmark
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Figure 2.22: Diagram comparing the performance of incremental parsing in Eco and batch
parsing in Python. The x axis shows the number of lines for each program measured, the y axis
shows the average time spent re-parsing edits within each program.

numbers. Investigating the corresponding files reveals that they trigger a worst case

scenario for incremental parsing. Two files (XMLChar.java and Constants.java) contain

blocks with hundreds of statements, while the other (OMGSystemException.java) contains

a class with a large number of functions. Parsing such programs creates deeply nested

parse trees, due to the left recursiveness of lists in LR grammars. For example, in Java

the rule for a list of statements has the form ‘statements: statements statement |

statement;’, and thus each statement increases the parse tree’s depth by one. When

editing a statement, the parser needs to break down the path from the root down to the

edit in order to reach it, and even though the statement subtree itself can be incrementally

re-parsed, all reductions back to the root need to be reapplied. This effect is worse the

earlier the statement appears, as it is then located deeper in the parse tree. Thus, editing

the first of the statements has the worst runtime, which in case of XMLChar.java is about

31ms. The runtime decreases with every following statement that is being edited as they

are located higher in the parse tree. Other edits within the file have a normal runtime of

about 2ms, thus pushing down the average incremental parsing runtime of the program

to around 17ms as seen in the figure.

2.9.3 Comparison to batch parsing

This section compares the performance of incremental parsing in Eco to traditional batch

parsing in Python. The aim of this comparison is to make the two parsers as directly

comparable as is practical, though there are some inevitable differences. The methodology

for the incremental parser is the same as in Section 2.9.1. However, since a batch parser
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Figure 2.23: Diagram comparing the performance of incremental parsing in Eco and batch
parsing in grmtools (Rust). The x axis shows the number of lines for each program measured,
the y axis shows the average time spent re-parsing edits within each program.

always parses the entire program from scratch, it isn’t necessary to edit the program

between parses, so instead the same program is simply parsed multiple times, recording

the average. The measurements do not include time spent reading the file from disk or

lexing its contents, which benefits the batch parser which, unlike Eco, would still have to

do these steps in a normal setting. The batch parser also doesn’t generate a parse tree,

giving it even more of an advantage. Figure 2.22 shows the results of the two parsers

when used on the Java Standard Library. Despite a methodology in the batch parsers

favour, we can still clearly see that batch parsing scales badly with increasing program

sizes, compared to incremental parsing. The batch parser is orders of magnitude slower

than the incremental parser, reaching parsing times of over 100ms for files with only a

few hundred lines of code. Bigger files (e.g. 1000+ LoC), increase this further to 200ms

and more, making it difficult to parse these programs after every keypress.

Some readers may suspect that comparing a slow Python batch parser against a slow

Python incremental parser tells us little of interest. What happens if we compare

our Python incremental parser to a fast batch parser written in a compiled language?

Figure 2.23 shows a comparison of incremental parsing in Eco and batch parsing in

Rust (generated using grmtools [75]), used on the Java Standard Library. Similar to the

traditional batch parser in Python, instead of editing the program, the grmtools batch

parser is simply run multiple times on the same input and the average recorded. While

the grmtools parser also doesn’t generate a parse tree, the timings do include lexing,

bringing it a little bit closer to the actual runtime of a batch parser when used within an
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editor5. The results show that, though a factor of 10 times faster than the Python batch

parser, the grmtools parser is still an order of magnitude slower than incremental parsing

in Eco. In the worst cases we are still getting parse times of over 100ms, which would

be unacceptable for an editor that parses on every keypress. We can therefore conclude

that incremental parsing is still a useful and neccessary technology even with the speed

of modern processors.

2.10 Related work

Many existing projects today employ some form of incremental parsing. Both Roslyn [55]

and Atom [14], for instance, use Wagner’s incremental parsing algorithms, with minor

differences. Roslyn is a compiler platform, that provides tools, like compilers and code

analysis, for programming editors such a Visual Studio. Since it communicates via an API,

editing operations by the user are not directly applied to the parse tree. Instead, users edit

normal text, which is then first synced with the parse tree maintained by Roslyn and then

incrementally re-parsed. Atom is a popular programming editor written in JavaScript.

The main difference is its incremental lexing approach, which instead of using lookback

counts, uses checkpoints from which lexing restarts after the user has edited the program.

Other projects, like Eclipse [46] or Papa Carlo [47], use ad-hoc, language-specific variants

of incremental parsing, which only incrementally re-parse small portions or fragments of

a program (e.g. blocks). Such fragments can not be easily generalised and need to be

defined manually for each language. They also do not have the granularity of Wagner’s

approach, and thus often re-parse more than is necessary.

Comparable incremental parsing algorithms exists for other grammar types. Shilling [72],

Li [52], and Yang [90] have developed incremental parsing techniques for LL parsers,

though, according to Wagner, their algorithms suffer from problems such as being

restricted to a single editing site, generating incorrect parse-errors on ε-rules, or having

non-optimal performance [88, p. 57]. Dubroy et al. show how a packrat parser can be

extended with incremental parsing, by using the memoization table to reuse results

from previous parses [22]. However, their approach is more conservative and only reuses

subtrees that weren’t changed; any changed node needs to be recreated, even if it ends

up being the same.

Not to be confused with incremental parsers are online parsers, which can parse a stream

of partially known input as it becomes available, e.g. Yi [9] and differentiating parsers [43].

For example, Yi only parses the input that is currently visible on the screen. This has the
5For the sake of completeness, Appendix A shows the comparison of Eco’s incremental parser and the

grmtools batch parser without lexing.
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advantage, that when opening a large file, it can be parsed very quickly. The remainder of

the file is then incrementally parsed as the user scrolls down, utilising parsing checkpoints

and caching previous results. The downside of this is that if the users jumps back and

forth between the beginning and end of the file (while editing the beginning) the whole

file needs to be re-parsed, as previously cached results become invalid.



Chapter 3

Error recovery

Error recovery is an important feature for any editor that wishes to show more than

only the first parsing error of a program to the user. Unfortunately, traditional error

recovery algorithms have many shortcomings, e.g. they are language dependent or their

results can often be more misleading than helpful in understanding the cause of an error.

Disregarding this, to the best of my knowledge no traditional error recovery approach

has been adapted to work within an incremental parser, and due to the complexity of

the subject, doing so was out of the scope of this thesis. I thus use Wagner’s history-

based error recovery algorithms for incremental parsers. This chapter discusses some

of its details that are incompletely or ambiguously explained and also describes some

problems Wagner’s algorithms have with certain grammars and provides solution for

those problems. Although all of Wagner’s error recovery algorithms are summarised, their

explanations are limited to only the most crucial details that are necessary to understand

the problems described here. If the reader wishes to know more about the finer details

of the algorithms, they may want to refer to Wagner’s description of his techniques [88,

p. 91]. Some of the solutions discussed here require slight modifications to the incremental

parsing algorithm. Appendix C summarises the full incremental parsing algorithm, with

these changes applied.

3.1 Introduction

In a batch environment there are several ways to recover from an error. For example, in

YACC, language creators can leave hints within the grammar which tell the parser what

to do in case an error occurs. By adding the symbol error to a grammar rule, the author

can tell the parser to skip all input until a certain terminal symbol is found, and then

reduce the rule as if the correct input had been parsed. The parser can then continue

53
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parsing as usual. The downside to this method is that it is language dependent, needs

manual alteration of the grammar, and may require multiple attempts to to get satisfying

results. An alternative, language independent, and automatic method for error recovery is

to make the parser guess terminal symbols to remove from or insert into the input so that

the parser can continue parsing [17]. The disadvantage of this approach is that there are

multiple ways in which an error can be repaired and it isn’t always obvious which repairs

should be preferred, leading to cascading errors which can often be misleading [20]. Often

the location of an error and the change that caused it are far away from one another

which makes it difficult to generate sensible error messages. Some studies thus find that

error messages often fail to aid programmers, especially novice ones, to understand the

cause of an error [59, 76].

In his thesis, Wagner proposes a complementary approach to traditional error recovery

that takes advantage of parse trees and their history. The history of the parse tree

includes every change the user made since the last time the program was parsed. Using

this history it’s possible – with a few exceptions like loading invalid programs or pasting

large chunks of code, where we need to fallback to traditional error recovery – to precisely

pinpoint the occurrence of an error to the exact change the user made that lead to it. If

a program was valid and becomes invalid after the user edited the program, e.g. via the

insertion or deletion of code, we know that edit must have caused the error.

In order to recover from an error, Wagner’s solution is as simple as pretending that the

change that caused the error never happened. This can be achieved by skipping the

subtree containing the edit during parsing, i.e. pushing the subtree from the previous

version of the tree onto the stack without looking at any changes contained within it.

Wagner calls this isolating the error. This is similar to manually removing the change

that caused the error, parsing the program, and then inserting the change back into the

program. Once a subtree has been isolated it does not need to be inspected again in

subsequent parses unless it contains new changes or its surrounding context1 has changed.

When isolating a subtree, we refer to the root of that subtree as its isolation node and

mark it as such.

Isolating errors allows us to continue parsing any other changes the user made that follow

the isolation and integrate them into the parse tree. The downside is that if the isolation

area is very large – at worst the entire parse tree can be isolated – a large part of the

program is not analysed. This prevents user changes within the isolated subtree from

being parsed and integrated into the parse tree or, if the changes are invalid, hide those

errors from being shown. User changes within isolation trees occur in two locations:
1In short, surrounding context means a node’s lookahead that is used to determine the reduction rule

of the node. See Section 3.5.1 for a more detailed explanation.
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Figure 3.1: A parse tree where subtree E2 has been isolated to recover from a parsing error at
node ‘*’. If subtree E1 had changes, they would have been re-parsed by the parser and could
potentially be retained. The subtree at T2 contains some valid user changes that haven’t been
re-parsed yet due to the error. However, we can use out-of-context analysis to independently parse
and integrate those changes into the parse tree. After the isolation of E2, the parser continues to
parse the remainder of the parse tree as normal.

before and after the error node. Changes before the error node will, by definition, have

been parsed normally. However, isolating the subtree they are contained in discards those

changes again, since their proximity to the error suggest they are likely to be wrong.

Changes within the isolated subtree, that come after the error, will not have been parsed.

In his thesis, Wagner thus also presents solutions to retain structural changes before and

analyse changes after the error. The former is done by traversing all changed subtrees

before the error, retaining valid changes while discarding the rest. The latter is achieved

using out-of-context analysis, which runs an independent analysis (using a separate parser)

on all affected subtrees and merges the result back into the main tree. Figure 3.1 explains

the terminology with the help of a parse tree.

The remainder of this chapter follows the same structure as Wagner’s thesis and explains

his error recovery in more detail. It also corrects a few typos, discusses problems with

empty nonterminals in several parts of his algorithms and how they can be solved, and

improves upon node reuse and tree traversal during error recovery. We will use Wagner’s

terminology to name specific versions of the parse tree. The term previous version means

the version of the parse tree after the user has made changes, but before those changes

have been re-parsed. The term current version describes the parse tree on the parsing

stack as it is being constructed. This version may be incomplete, which means it consists

partially of old and new subtrees, some of which may not have been attached to a parent

yet. The reference version describes a parse tree, preceding the previous version, that is

syntactically correct, i.e. has no errors, and has no pending user changes.
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1 def find_iso_treeW() -> (Node, int):
2 node = stack[-1]
3 while node is not root:
4 node = node.parent
5 offset: int = get_offset(node)
6 i: int = get_cut(offset)
7 if i >= 0 and can_shift(node, i):
8 return node, i
9 return root, 0

10 def get_cutW(offset: int) -> int:
11 sl = 0
12 for i in len(stack):
13 if sl == offset:
14 return i
15 sl += stack[i].text_length()
16 return -1

Listing 3.1: Simplified Python version of Wagner’s algorithm for finding isolation nodes. The
algorithm starts with the top element of the stack (line 2) and traverses its parents (line 3–4).
For each parent it tries to find an index on the stack where that parent can be shifted (line 5–7).
If such an index is found the parent is returned as an isolation candidate (line 8). To find this
index, Wagner uses the method get_cut, which iterates over all elements on the stack (from
bottom to top) summing up their text-lengths until they match the textual offset of the node
being checked. In the worst case scenario that no candidate could be found, the entire tree is
isolated (line 9). The method can_shift is used to test if a candidate can be shifted at the stack
position returned by get_cut. When a candidate has been found, the stack is cut back to that
position, i.e. all elements after index i are removed. The method get_offset calculates a node’s
textual offset in the parse tree.

Section 3.2 explains how isolation nodes are found and discusses a problem with empty

nonterminals that leads to larger than necessary isolations. Section 3.3 explains how

already re-parsed changes within an isolation can be retained. It also fixes some typos

in Wagner’s code examples, adds a minor optimisation that improves tree traversal,

and discusses functions from Wagner’s algorithms that are insufficiently explained. Two

problems are also discussed: one involving the retaining of empty nonterminals which

can break error recovery; another regarding the interaction between retained subtrees

and history management. Section 3.4 explains Wagner’s out-of-context analysis which

attempts to parse and integrate unprocessed changes within the isolation area. The

section provides an alternative way of setting up out-of-context analysis that, unlike

Wagner, doesn’t require transforming the grammar. Finally, Section 3.5 discusses post-

isolation, e.g. how errors, once they are found, are marked and presented to the user. The

section also shows a problem with isolated subtrees in subsequent parses as well as an

optimisation that improves node reuse during error recovery.

3.2 Finding isolation nodes

Wagner explains how isolation regions can be computed in [88, p. 96]. Note that the

following explanation only gives an overview and leaves out a few details of Wagner’s

algorithm. Please refer to his thesis for the complete algorithm.

Listing 3.1 shows a highly simplified algorithm for finding isolation nodes. The basic idea

for isolating an error is to find a minimal subtree that spans the changes that lead to
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Figure 3.2: An example using the algorithm from Listing 3.1 to find the isolation node for an
error. It shows a parse tree (left) where a new token ‘+’ was inserted, and the parse stack (right)
at the point an error was found during the re-parsing of the tree. To find an isolation node we
start with the node on top of the stack, here ‘*’, and traverse its parents, until we find a valid
isolation node. The first candidate we try is T3, whose offset is 2. Now we need to find a stack
position that matches that offset. We do this by iterating over the stack and adding together the
text-lengths of each element until it is equal to the candidate’s offset. We find such a position
at stack index 1, since the combined text-lengths of E1 and ‘+’ is 2. We then temporarily cut
back the stack to that position (in this example this removes ‘*’ and ‘2’ from the stack) and
test if the candidate can be shifted. If no such stack position can be found or the candidate
couldn’t be shifted, we revert the stack and increase the isolation area by continuing to traverse
the candidate’s parents. In this case, however, T3 can be shifted and is thus returned as a valid
isolation node.

the error, and ignore it so that parsing can continue. The root of this subtree is called

the isolation node. To find such a subtree, we first traverse all ancestors of the node

immediately before the error. For each ancestor we calculate its textual offset in the

parse tree, which is the combined text-length2 of all tokens in the parse tree, up to (but

excluding) the ancestor. We then try to find an index on the current parse stack, where

the ancestor can be shifted. This is an index i, where the combined text-length of all

nodes on the stack up to (and including) i, is equal to the ancestor’s textual offset. Once

such a position is found we cut back the stack, i.e. remove all elements from the stack past

index i, and check if the ancestor can be shifted there. If no such position could be found

or the ancestor cannot be shifted, we revert the stack back to its original configuration

and search for a larger isolation area by searching further up the tree. Figure 3.2 shows

an example of the algorithm finding an isolation node for an error.

3.2.1 Dealing with empty nonterminals on the stack

Wagner’s algorithm for finding isolation nodes does not account for empty nonterminals

(i.e. nonterminals without children) on the stack. If the isolation candidate is preceded by
2The text-length of a token is the character length of its value.
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Figure 3.3: An example showing why we should consider empty nonterminals during the finding
of an isolation node. a) A grammar (left), its parse tree with an isolated error (middle), and the
parse stack at the point when the error was found (right). The parse tree shows that even though
subtree B is a valid isolation, a larger isolation S was chosen. While the algorithm considered
B as an isolation node, finding an index on the stack returned index 0, since B’s textual offset
is 1 which matches the text-length at index 0 (i.e. subtree A). However, B cannot be shifted at
that position, since the grammar requires X to be pushed first. But index 1 was never considered
because the text-lengths already matched at index 0. b) Choosing a larger isolation area can
keep valid changes from being integrated into the parse tree and instead being marked as errors.
After isolating the error from (a), the user inserted d and c. The parser successfully parsed d,
but the changes cannot be retained, since new subtree D doesn’t exist in the previous version
of the tree. This causes the out-of-context analysis of c to fail, since it requires d to be parsed
successfully. c) When choosing a smaller isolation subtree B, the user changes can be integrated
normally by the parser without the need to retain or out-of-context analyse them.

an empty nonterminal, this can lead to minimum isolation nodes being falsely rejected,

and a larger isolation area chosen instead (see Figure 3.3a). Typically, choosing a larger

isolation is not too problematic, since the retain algorithm and out-of-context analysis

take care of integrating changes within isolations, and ‘increased time spent searching

for a tighter isolation region may provide little practical benefit’ [88, p. 102]; though it

may affect the performance of error recovery, since more subtrees need to be retained or

analysed via out-of-context analysis. In some cases, however, it can mean that subtrees

are not retained or out-of-context analysed at all (see Figure 3.3b). The main reason for

these problems is the function get_cut [88, p. 97], which stops searching for an eligible

stack position as soon as it finds one where the candidate’s offset matches the text-lengths

of the nodes up to that position. If the isolation candidate cannot be shifted at that

position, no other position is tried, and instead the algorithm increases the isolation area

by searching the candidate’s ancestors. However, if the next stack position has an empty
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1 def find_iso_treeWD() -> (Node, int):
2 node = stack[-1]
3 while node is not root:
4 node = node.parent
5 offset: int = get_offset(node)
6 sl = 0
7 for i in len(stack):
8 if sl == offset and can_shift(node, i):
9 return node, i

10 elif sl > offset:
11 break
12 sl += stack[i].text_length()
13 return root, 0

Listing 3.2: An improved algorithm for finding isolation nodes, that considers empty nontermi-
nals on the stack when testing if an isolation candidate can be shifted. The function get_cut has
been integrated into the main function (line 7–12). This allows us to keep searching for a stack
position, even if the candidate couldn’t be shifted at the last one. However, we stop searching as
soon as the combined text-lengths on the stack exceed the candidate’s offset (lines 10–11). This
makes sure that the index is only increased, if the following elements are empty nonterminals.

nonterminal, that position would still match the candidate’s offset and could be a valid

position to shift the candidate, but it is never tried.

Fortunately, this problem can easily be fixed. If the index returned by get_cut doesn’t

allow the candidate to be shifted, we simply increase the index. The extra time spent on

this is negligible as we only consider stack positions with empty nonterminals, and stop

as soon as the combined text-lengths are bigger than the candidate’s offset. Listing 3.2

shows an improved algorithm of the one from Listing 3.1. Using this algorithm fixes the

problem from Figure 3.3a by choosing a smaller isolation subtree, which allows the other

user changes to be retained and analysed as Figure 3.3c shows.

3.3 Retaining subtrees

When isolating a subtree, structural changes made by the parser within that tree must be

reverted, because we cannot generally assume that those changes are correct due to their

close proximity to the error. However, some subtrees within the isolation area may later

be recreated verbatim once the error is fixed. Fortunately, we are often able to prevent

this needless repetition of work, by retaining subtrees if they meet certain requirements.

Wagner explains this process in [88, p. 100]. The conditions for retaining a subtree within

an isolation can be summarised as follows: the subtree exists both in the previous and

current version of the parse tree; and its textual offset and text-length haven’t changed

between the two versions. Naturally, subtrees that have no changes can always be retained

(which means no time is spent traversing their children). Figure 3.4 shows an example of
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a) b) c)

Figure 3.4: An example of an isolated subtree where some changes can be retained instead of
being discarded. The parse tree shown is a simplified and elided version of a Python program
showing an if-statement with a condition 1>2 and a body p. a) The parse tree has been edited by
the user by adding a second colon and inserting +3 to the RHS of the condition. b) The subtrees
that the parser has so far re-parsed and pushed onto the stack, when the error occurred. These
are the only candidates that can potentially be retained. We can see that the RHS of condition
has been re-parsed and a new nonterminal add was created. c) The parse tree after the error
has been isolated. The changes in the subtree condition (i.e. the new node add) were retained
instead of discarded. The subtree condition met the retain requirements since its textual offset
and text-length are the same as in the previous version.

a subtree being retained during the isolation of an error. The finding and retaining of

subtrees within an isolation happens during a refinement process, which also includes

out-of-context analysis. Wagner’s algorithm is shown in Listing 3.3.

3.3.1 Small optimisation for pass1

In Wagner’s original algorithm, the function pass1 attempts to mark any subtree that

precedes the error and fulfills certain criteria as retainable, by recursively traversing the

isolated subtree. The traversal includes subtrees that span the error, since they may

contain subtrees that come before the error that can potentially be retained; but it also

includes subtrees that come after the error. The latter, however, can never be retained

and thus there is no need to traverse them. Fortunately, we can add a simple optimisation

to the algorithm, that stops traversing the parse tree as soon as the current subtree’s

offset exceeds the offset of the error. The optimisation is shown in Wagner’s modified

algorithm shown in Listing 3.3 in lines 11–14.

3.3.2 Typo in pass2

Wagner’s pass2 function contains a small typo. To traverse the tree, it recursively calls

pass2. However, instead of passing the child as an argument, the algorithm uses node

instead. This can lead to infinite loops if the node spans the error offset. Fortunately, the
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1 def refineW(isonode: Node, error_offset: int):
2 offset = get_offset(isonode)
3 pass1(isonode, offset, error_offset)
4 isonode.discard()
5 pass2(isonode, offset, error_offset)
6

7 def pass1WD(node: Node, offset: int, error_offset: int):
8 for child in node.get_children(prev):
9 if offset + child.text_length(curr) <= error_offset:

10 find_retainable(child)
11 elif offset < error_offset:
12 pass1(child, offset)
13 else:
14 break
15 offset += child.text_length(curr)
16

17 def find_retainableW(node: Node):
18 if node.exists:
19 if not node.nested_changes() or same_text_pos(node):
20 add node to retainable
21 return
22 for child in node.get_children(prev):
23 find_retainable(node)
24

25 def pass2WD(node: Node, offset: int, error_offset: int):
26 for child in node.get_children(curr):
27 if offset > error_offset:
28 attempt_out_of_context_analysis()
29 elif offset + child.text_length(curr) <= error_offset:
30 retain_or_discard(child, node)
31 else:
32 child.discard()
33 pass2(child, offset)
34 offset += child.text_length(curr)
35

36 def retain_or_discardW(node: Node, parent: Node):
37 if node in retainable:
38 node.set_parent(parent)
39 remove node from retainable
40 return
41 discard_and_mark_errors(node)
42 for c in node.get_children(curr):
43 retain_or_discard(c, node)

Listing 3.3: Wagner’s algorithm for refining an isolated subtree. The algorithm has been
converted to Python and includes a modification and an optimisation which are described in
Sections 3.3.1 and 3.3.2. After an isolation node has been found, refine is called with the
isolation node as the argument. The algorithm is split into two phases. The first phase (lines
7–15) traverses the previous version (prev) of the parse tree and marks eligible subtrees as
retainable. Afterwards, the isolation node’s changes are discarded (line 4), followed by the second
phase (lines 25–41). This phase traverses the current version (curr) of the parse tree and runs
out-of-context analysis on changed subtrees after the error (lines 28–29), retains changed subtrees
before the error if they have been marked as retainable (lines 29–30), and discards changed nodes
that span the error (lines 32–33).
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1 def same_text_posWb(node: Node) -> bool:
2 if text_length(node, prev) == text_length(node, curr) \
3 and offset(node, prev) == offset(node, curr):
4 return True
5 return False
6

7 def text_lengthD(node: Node, version: int) -> int:
8 if node is terminal :
9 return len(node.value(version))

10 l = 0
11 for c in node.get_children(version):
12 l += text_length(c, version)
13 return l
14

15 def get_offsetD(node: Node, version: int) -> int:
16 offset = 0
17 while node is not root:
18 left: Node = node.left_sibling(version)
19 if left:
20 node = left
21 offset += text_length(node, version)
22 else:
23 node = node.get_parent(version)
24 return offset

Listing 3.4: Naive implementations to calculate the text-length and offset of a node. The
text-length can be computed by iterating over the node’s entire subtree and adding together the
text-lengths of all contained tokens. A node’s offset can be computed, by traversing the parse
tree backwards, starting at the node, and adding together the text-lengths of all its left siblings
and the left siblings of its ancestors until we reach the root.

fix is simple: the algorithm should pass child instead of node. The algorithm shown in

Listing 3.3 has been changed accordingly.

3.3.3 Efficiently calculating text_length and offset

One of the conditions to retain a subtree is that its textual offset and text-length are

the same between the previous and current version of the parse tree. In Wagner’s

algorithm this is tested using the function same_text_pos, which ‘determines whether

a subtree’s yield occupies the same character offset range as in the previous version

of the program.’ [88, p. 101]. Its implementation is trivial, however it depends on the

offset and text-length of a node, for which Wagner does not provide an implementation.

Unfortunately, a naive implementation for those values performs poorly as it requires

the repeated traversal of the parse tree even if results are cached (see Listing 3.4).

The following explains how we can efficiently calculate offset and text-length values by

piggybacking on traversals already carried out by history logging and incremental parsing

as well as the retain algorithm.
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Both offset and text-length need to be calculated in two versions: the previous version

(just after the user made edits) and the current version (the partial parse tree during

the re-parsing of the user edits). We can incrementally calculate the current version’s

text-length of a node during parsing. When a node is created (or reused) during a

reduction, all of its children will have already been visited by the parser. We can use this

to compute the text-lengths from the bottom up. The text-length of a token is simply

the character length of its value. The text-length of a nonterminal is the sum of the

text-length of all tokens contained in its subtree. It can be calculated during its reduction,

e.g. if one or more tokens are reduced to a nonterminal node, we just add together the

text-lengths of all tokens and store the result as the text-length of the nonterminal node.

If that node is then further reduced, we can use its stored text-length to compute the

text-length of its new parent, and so on.

Note, that these values are only correct for the current version, and editing the parse

tree requires them to be recalculated. For example, removing a token from the parse tree

changes the text-lengths of all its ancestors. Luckily, prior to a re-parse, user changes are

always logged to the parse tree’s history as the previous version. Storing those changes

requires all changed subtrees to be traversed. This traversal also runs from the bottom up,

so we can use it to incrementally calculate each changed node’s text-length in a similar

fashion to its calculation during a reduction.

Keeping the offset of a node up to date is slightly more difficult. The main reason for

this is that an edit at the beginning of the program would change the offsets of every

single node in the entire parse tree. Fortunately, the only time this value is needed during

refinement is to decide if a node is retainable. This means that it is sufficient to calculate

this value during the traversal of the retainable subtrees and only for those nodes that

can be retained, i.e. nodes that appear before the error. In Wagner’s algorithm we already

compute the current version’s offset of each of these subtrees during the pass1 traversal,

by adding together the text-lengths of each node we encounter. Similarly, we can calculate

the previous version’s offset by summarising the previous version’s text-length of each

node. We then simply pass these values over to the same_text_pos function. Listing 3.5

shows the updated functions of the refinement algorithm.

3.3.4 Implementing node.exists()

Both the retain and top-down reuse algorithms need to know whether or not a node

exists in the current version of the parse tree. In Wagner’s implementation nodes have a

method exists(version ), which returns false if that node previously has been marked

as deleted using the process_deletion function [88, p. 19], which is referenced in the
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1 def refineWD(isonode: Node, error_offset: int):
2 offset = stack_offset()
3 pass1(isonode, offset, offset, error_offset)
4 isonode.discard()
5 pass2(isonode, offset, error_offset)
6

7 def pass1WD(node: Node, offset: int, poffset: int, error_offset: int):
8 for child in node.get_children(prev):
9 if offset + child.text_length(curr) <= error_offset:

10 find_retainable(child, offset, poffset)
11 elif offset < error_offset:
12 pass1(child, offset, poffset)
13 else:
14 break
15 offset += child.text_length(curr)
16 poffset += child.text_length(prev)
17

18 def find_retainableWD(node: Node, offset: int, poffset: int):
19 if node.exists:
20 if not node.nested_changes() or same_text_pos(node, offset, poffset):
21 add node to retainable
22 return
23 for child in node.get_children(prev):
24 find_retainable_subtrees(node)
25 offset += child.text_length(curr)
26 poffset += child.text_length(prev)
27

28 def same_text_posWD(node: Node, offset: int, poffset: int) -> bool:
29 if node.text_length(prev) == node.text_length(curr) and offset == poffset:
30 return True
31 return False
32

33 def stack_offsetWD() -> int:
34 l = 0
35 for n in stack:
36 l += n.text_length(curr)
37 return l
38

39 # called during reduce/save_tree
40 def calc_text_lengthD(node: Node, version: int):
41 if node is terminal :
42 l = len(node.value(version))
43 else:
44 l = 0
45 for c in node.get_children(version):
46 l += c.text_length(version)
47 node.set_text_length(l, version)

Listing 3.5: Updated functions for finding retainable subtrees, which calculate offsets for
each node on the fly, using text-lengths pre-calculated during reductions. Since pass1 already
calculates the current version’s offset (line 15), we only have to add the computation of the
previous version’s offset (line 16); its inital value passed by refine is the same as offset. Since
the function find_retainable also traverses the tree, we need to continue computing both the
current and previous version’s offset (line 25, 26). These values are then simply passed over to
same_text_pos, where they are used to determine if a node is retainable. The initial offset of
the isolation node (second argument of pass1) can now also be calculated using stack_offset
instead of get_offset, which simply sums up the text-lengths of the nodes on the stack (lines
33–37).



Chapter 3. Error recovery 65

Figure 3.5: This example shows a subtree being falsely retained even though it didn’t exist
in the current version. The parse tree on the left shows the node 1 being deleted by the user.
During re-parsing, an error occurs immediately when trying to parse ‘+’. At this point, no
node has been parsed and the stack is empty. Thus no node should be retainable. However,
Wagner’s process_deletions only runs after parsing has completed, so during error recovery
exists(current_version) still returns true for all nodes. This leads to the subtree E1 being
retained whereas it should be discarded.

implementation of top-down reuse [88, p. 74]. However, top-down reuse is only run after

parsing has completed, which would mean that this information is not yet available when

we try to find retainable subtrees during error recovery (see Figure 3.5 for an example).

This suggests that Wagner uses some additional mechanism to determine the existence of

nodes during error recovery.

In his thesis, Wagner briefly mentions the node reuse technique by Larchevêque [49]. He

writes ‘the history mechanisms we define subsume the mark/dispose operations described

by Larchevêque’ [88, p. 57]. This suggests that Wagner’s implementation is based on

Larchevêque’s, though since the implementation isn’t available anymore, this is difficult

to verify. The technique involves initially marking nodes in the parse tree as disposable,

and then only marking them as reused when they are part of a shift or a reduction. We

can assume that this is done lazily, as marking each node in the entire parse tree as

disposable before re-parsing them, would be needlessly inefficient. With this in mind, the

technique can be implemented as follows. Each node has a flag exists which we set to

false whenever that node is encountered during parsing. When the node is pushed onto

the parse stack (either via a normal shift, an optimistic shift or a reduction) we set its

exists-flag to true. Using these two steps we can guarantee that the information about

whether a node exists in the current parse tree or not is always up to date. Nonterminals
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(a) (b) (c)

Figure 3.6: An example, showing a bug within the retainability algorithm. a) The parse tree
after parsing the input ‘class x:’ and then deleting the keyword ‘class’. b) During re-parsing
the node WS1 is optimistically shifted and reassigned to parent WS3, which was reused. c) During
recovery from the error at ‘:’, S is isolated which results in WS1 and WS3 being retained. This
leads to both S and WS3 pointing to WS1 as their child.

that are broken down, but not reused during a reduction, are marked as non-existing

as their flag is never set back to true. Nodes within optimistically shifted subtrees are

not visited and thus keep their flag being set to true from the previous parse. There

is, however, a small pitfall. Sometimes, optimistically shifted subtrees are undone via

right-breakdown when it turns out that shifting them was invalid. This results in the

subtree being removed from the parse stack and broken down, which means that the

root node and all other nodes that were broken down in the process, need to set their

exists-flags to false. Of course, if during a reduction one of those nodes is reused again

and pushed back onto the stack, its exists value is set to true again.

3.3.5 Retaining empty subtrees

Wagner’s algorithm for retaining subtrees within isolations deals with empty nonterminals

incorrectly. This section explains why this is a problem and shows how it can be fixed.

Consider the following grammar:

S: WS main;

main: class_def | stmt;

class_def: "class" WS name ":" WS;

stmt: name ";";

name: "ID" WS;

WS: WS "<ws >" | ;

For the input ‘class x:’ this grammar produces a valid parse tree. However, when we

edit this program by deleting the keyword ‘class’, a nonsensical parse tree is produced,

as Figure 3.6 shows.
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(a) (b) (c)

Figure 3.7: An example showing how disallowing nonterminals that don’t consume text from
being optimistically shifted, solves the problem from Figure 3.6. a) The initial parse tree as
in Figure 3.6 b) Because WS1 is not shifted onto the stack, a new nonterminal WS6 needs to be
created, which is later reduced to WS3. c) When S is isolated and WS3 is retained there is no
conflict any more, since WS3 does not reference WS1.

In the example, S was chosen as the isolation node, because there is no valid position

on the stack we can cut back to that allows main or class_def to be shifted. The

problem occurs because the node WS1 was optimistically shifted and, during its reduction,

reassigned to WS3, replacing WS2. During the search for retainable nodes both WS1 and WS3
can be retained, since their text offsets and lengths haven’t changed between the previous

and current version of the parse tree. However, since S was isolated, its changes are being

discarded and the node is reset to the previous version. This includes its reference to

child WS1, whose parent pointer is also reset to reference S when it is retained. However,

because WS3 was retained, it still references WS1, resulting in two parents referencing the

same child.

We can apply a simple fix that solves the part of the problem where two parents reference

the same child. However, this still leads to an incorrect parse tree. The function

node.set_parent(parent ) is not explained in Wagner’s thesis, though it is obvious that

its intention is to set the parent pointer of the node to its new parent. However, it may

also remove the node from its previous parent’s list of children. Applied to the example in

Figure 3.6, this would remove WS1 from WS3’s children, when it is retained and reassigned

to S. Now WS1 is only reference by one parent. However, WS3 is still being retained and

is now an invalid subtree since it’s missing a WS nonterminal (the WS-rule requires two

children).

We can solve this problem entirely by restricting optimistic shifts in the incremental

parser to nonterminals that consume text. The main reason for the problem is that

optimistically shifted empty nonterminals can be retained, even if they have been moved

into a different subtree. Since their text-length is zero, moving them into another subtree

doesn’t affect that subtree’s text-length and so it can be retained. Thus, not being able to
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optimistically shift empty nonterminals circumvents this problem entirely. In the example

in Figure 3.6, this solution would keep WS1 from being shifted, and instead being broken

down via left breakdown. Since WS2 is also empty, it would also be broken down and a

new node WS6 would be created, becoming WS3’s child instead. This allows the algorithm

to retain WS3 without any problems (see Figure 3.7).

A small disadvantage of this solution is that it creates new empty nonterminals, throwing

away nodes that could have been reused, wasting memory since both the new node and

the old node are stored within the parse tree’s history. Fortunately, this is not a significant

problem in practice, as top-down reuse replaces the newly created nodes again with their

equivalents from the previous version of the parse tree before they are stored within the

history.

Unfortunately, the above solution also reveals another problem, which happens when: a

subtree has no changes in the previous version and is optimistically shifted; due to an

error that subtree then needs to be broken down and re-parsed via right-breakdown; the

subtree contains an empty nonterminal, which can’t be reused because of the solution

above; and the subtree is then retained, but its parent is discarded. This then results in a

subtree with a change, but no trail of nested_changes-flags leading down to it. Because

of this those changes won’t be processed by top-down reuse and more importantly they

won’t be logged to the history. See Figure 3.8 for an example.

Luckily, the solution is simple: when retaining a node during the retain-or-discard phase,

we check if it contains changes and if so, we mark the parent with the nested_changes

flag. In the best case, the parent is already marked and there’s nothing to do. If not,

marking the parent will also mark the parent’s parent, and so on, creating a trail of

nested_changes flags up to the root. This enables top-down reuse and history logging

to find and process that change. In the example in Figure 3.8, retaining A would mark its

parent B as having nested changes completing the trail from the root down to the node

C2, which can now be found by top-down reuse and replaced with C1; or, if top-down

reuse is not utilised, be saved to the history log.

3.4 Out-of-context analysis

For out-of-context analysis, Wagner employs a technique introduced by Petrone [65].

The idea is as follows: to parse a subtree independently from its surrounding context,

a new, virtual parse tree is created where the subtree is the entire parse tree. This

virtual parse tree is then parsed with a subset of the original grammar that only accepts

input that results in the same nonterminal type as the original subtree. This requires
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S: B "d";
B: "b" A;
A: "a" C;
C: ;

Figure 3.8: a) A parse tree, generated from the input bd, that has been edited via insertion
of a new node ‘e’. b) Initially B is optimistically shifted, but needs to be broken down via
right-breakdown because it is followed by ‘e’ which cannot be shifted. Because of the bug fix
from Section 3.3.5, C1 cannot be reused and needs to be recreated. Then the nodes a and C2 are
reduced to A, which is reused from the previous version, and its changed attribute set to true.
After shifting ‘e’ an error occurs. c) During error recovery, S is isolated and B is discarded since
it doesn’t exist in the current version. However, A can be retained, since it exists in both versions
and its offset and length haven’t changed. Unfortunately, because B has been discarded, there
is no trail of nested_changes flags leading to node C2. This means that: it cannot be replaced
with its equivalent from the previous version via top-town-reuse; and more importantly, it cannot
be reached by the history logging to store the new node C2. The latter can lead to problems in
subsequent parses, since history and current version don’t match.

the modification of the grammar to ‘allow any symbol to serve as the start symbol’ [88,

p. 101]. If, after re-parsing the subtree, the symbol on top of the parse stack is the same

as the previous root of the subtree, then the re-parsed subtree can be reintegrated into

the original parse tree. Otherwise its changes must be discarded again. See Figure 3.9 for

an example.

3.4.1 Out-of-context analysis without grammar transformation

One of the problems with this approach is that modifying the grammar adds additional

states to the state graph which increases time and memory needed to construct the

parse tables. For the grammars tested this lead to on average 50% larger parse tables

(see Figure 3.10). The following shows an alternative approach that doesn’t require the

alteration of the grammar. Instead it modifies the incremental parser to allow it to parse

a detached subtree using the original grammar. For this we need to do three things:

create a separate incremental parser and initialise it to a state where the subtree can be

parsed; create a virtual parse tree where the subtree’s preceding and succeeding nodes

are used as virtual bos and eos nodes; modify the parser so that it stops parsing when it

reaches the virtual eos node. Figure 3.11 shows an example using the same scenario as

in Figure 3.9.
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(a)

(b) (c) (d) (e)

Original grammar:
E ::= T | E "+" T
T ::= "int" | T "*" "int"

New grammar:
N ::= bosE E eosE | bosT T eosT
E ::= T | E "+" T
T ::= "int" | T "*" "int"

Figure 3.9: An example showing how to independently parse a subtree using out-of-context
analysis and reintegrating the results into the parse tree, as described by Wagner. a) In order to
parse subtrees without their surrounding context, the grammar has been altered as described
by Petrone. b) Subtree E has been isolated, but subtree T2 has changes that can potentially be
integrated into the parse tree. c) A new virtual parse tree is created with T2 at the top and d)
reanalysed using a separate parser. e) The resulting subtree has the same symbol (T) and can
thus be reintegrated into the original parse tree.

Python PHP Java

State graph 1.6x 1.2x 1.7x
Parse table 1.8x 1.2x 1.6x

Figure 3.10: A table showing the memory increases of the state graph and parse table when
using Petrone’s grammar transformation on Python, PHP, and Java grammars to allow using
them for out-of-context analysis.

When re-parsing the virtual parse tree with the modified incremental parser, we can’t

simply return the result as soon as we see the virtual eos node. In the example from

Figure 3.11, when we see eos, the reduction to T3 has not happened yet. If there is

more than one element on the parse stack, we thus first need to apply any outstanding

reductions using the virtual eos node as the lookahead (if that node is a nonterminal,

and the parse table hasn’t been altered to allow nonterminal lookaheads, we use its most

left terminal symbol as the lookahead instead). The out-of-context analysis is successful

if the stack has exactly one element, and the parsing state is the same as that of the

original parser after parsing the subtree. Afterwards, like Wagner, we check if the symbol

of the old subtree and the re-parsed subtree are still the same, and only then reintegrate

the changes into the original parse tree. Listing 3.6 shows a simplified algorithm and the

changes we need to apply to the incremental parser.
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(a) (b) (c) (d)

Figure 3.11: An example, showing out-of-context analysis without grammar transformation.
The idea is very similar to Petrone’s and only requires a few modifications to the incremental
parser. a) We first initialise a new incremental parser to a state where T2 can be parsed. This is
the state just after ‘+’ was pushed during the last successful parse. b) We create a new virtual
parse tree with the subtree at the top, and the subtree’s preceding node as bos and its succeeding
node as eos. c) Now the virtual parse tree can be re-parsed by the modified incremental parser.
d) Like Wagner we compare the re-parsed subtree’s symbol with the original subtree and only
integrate the result if it is the same.

3.5 Dealing with isolated subtrees during parsing

Once an error has been isolated, the parser can continue re-parsing the rest of the tree

as usual. In subsequent parses isolated subtrees are skipped unless they contain new

changes or their surrounding context has changed. This section explains some details

missing in Wagner’s thesis and discusses some problems with isolated subtrees during

parsing. Section 3.5.1 explains what the surrounding context of a node is and how it is

used to determine if an isolation needs to be re-parsed. Section 3.5.2 shows how to mark

isolated subtrees so that they can be found in subsequent parses. Section 3.5.3 describes

a problem with the interaction of an isolated subtree and the right_breakdown method

during parsing. Section 3.5.4 shows an optimisation that increases node reuse during

error recovery. Finally, Section 3.5.5 briefly discusses the ways in which we can present

errors to the user.

3.5.1 Surrounding context

In his thesis, Wagner describes that during parsing, isolated error locations need to be

revisited ‘since additional modifications may have changed the surrounding context in

such a way that the former error is now valid’ [88, p. 94]. However, the only description

for surrounding context Wagner offers is the following: ‘In general, the mapping between

a token and its lexeme is dependent on the surrounding context; a token is lexically
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1 def out-of-context-analysisD(subtree: Node):
2 vbos: Node = preceding(subtree)
3 veos: Node = next_lookahead(subtree)
4 pstate: int = subtree.state
5 psymbol: Symbol = subtree.symbol
6 op = new incremental ooc parser
7 op.state = vbos.state
8 op.tree = Root(vbos, subtree, veos>)
9 if op.incparse(veos, pstate)

10 and op.stack[0].symbol == psymbol:
11 integrate changes
12 else:
13 discard changes

14 class IncrementalOOCParserD:
15 def incparseD(veos: Node, target: int):
16 ...
17 if la is veos:
18 while len(stack) > 1:
19 apply reductions using veos
20 if state == target:
21 return True
22 return False
23 ...

Listing 3.6: A simplified algorithm for out-of-context analysis without grammar transformation.
Before out-of-context analysis of a subtree can commence, we need to create a virtual parse tree
(line 8). For that we create virtual bos and eos nodes using the nodes surrounding the subtree
(lines 2–3). We initialise a new (modified) incremental parser and initialise it so it can parse the
subtree (line 6-8). When re-parsing the virtual parse tree, we stop immediately when we reach
the virtual eos node (line 17). If the stack contains multiple elements, this means there is still
work to do and we apply any outstanding reductions using the virtual eos node as lookahead
(lines 18–19). If that node is a nonterminal we can use its most left token instead. Only if the
parsing state and the resulting virtual parse tree match the reanalysed subtree’s previous state
(pstate) and symbol (psymbol), can the changes be integrated into the original parse tree (lines
9-11, 20). Otherwise they are discarded (line 13).

dependent on the set of tokens that establish sufficient context for determining this

mapping’.

The following summarises my understanding of what surrounding context means and gives

a simple algorithm for it. Wagner’s description, in essence, talks about the relationship

between a token and its successor, i.e. the token’s lookahead (see Section 2.5.3). From

this we can infer that the surrounding context of a nonterminal node also is its lookahead,

i.e. the token that was used to lookup the reduction which created that node. If that

lookahead changes, then the previous reduction is likely not valid any more and needs

to be re-parsed. Figure 3.12 shows an example of surrounding context and gives an

algorithm on how to find it. We have already seen the concept of surrounding context

before with right_breakdown in Section 2.6.2: when we optimistically shift a subtree,

we do this without considering its lookahead, which may have changed. The validation

phase in the incremental parser thus makes sure that the optimistic shift is reverted, if

the lookahead invalidates the previously shifted subtree.

3.5.2 Marking isolation trees and errors

Isolating an error essentially defers the incorporation of changes to a later point in time,

when more information has become available to parse those changes successfully. During

isolation, the path leading down to those unincorporated changes needs to be marked
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1 def surrounding_contextWb(node: Node) -> Node:
2 la: Node = next_lookahead(node)
3 while la is a nonterminal :
4 if la.has_children():
5 la = la.children[0]
6 else:
7 la = next_lookahead(la)
8 return la

Figure 3.12: To find the surrounding context of a node we traverse the node’s successors in
the parse tree until we find a token. In the parse tree on the right, the subtree at B has been
isolated. Its surrounding context is the token g, since g was used during parsing to determine the
reduction of B. Thus, if g changes, we also have to revisit the isolated subtree as that change
may affect the way in which the subtree is parsed.

with nested_error flags. This enables the parser to find and re-parse those changes

when the isolated subtree is revisited later on. However, the parser only needs to revisit

the isolated subtree if it contains new changes or its surrounding context has changed.

Wagner describes: ‘to locate errors efficiently [...] the path between the root of the tree

and each error-containing node must be marked [...] with boolean node annotations

similar to the nested attribute [...]’ [88, p. 94]. This seems to suggest that the entire path

from the root down to each node containing an error, is marked. However, later on he

writes: ‘The paths to unincorporated modifications defined by nested_error attributes

are terminated immediately below the root of the isolated subtree, preventing subsequent

analyses from re-inspecting isolated errors unnecessarily’ [88, p. 96]. This suggests that

only a part of the path to the error node is marked, however it is unclear whether he

means the path from the root to the isolation node, or the path from the isolation node

to the error node.

Let’s assume that error recovery only marks the path from the isolation node down to the

errors, and that there is no path from the parse tree root to the isolation node. Figure

3.13 shows how this behaviour can result in wrong parse trees. The example demonstrates

that instead, we need to mark the entire path from the root to the error node in order to

find and re-parse isolated changes in subsequent parses: we need a path to the isolation

node in order to re-parse it if its surrounding context has changed; but we also need

a path from the isolation node to all the isolated changes, so that when the isolated

subtree is being re-parsed, we can find those changes and reanalyse them. However, like

Wagner we don’t want to re-parse isolated subtrees unless doing so leads to new changes

being incorporated into the parse tree. We can do this by leaving the isolation node itself

unmarked and only re-parse it if it contains new user modifications or its surrounding

context has changed. Otherwise, the isolated subtree is skipped by optimistically shifting

it, as though it is a subtree without any changes. Figure 3.14 shows how the problem
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S: P R
| P R2
| P2 R2;

P: L;
P2: L2;
L: "a";
R: "c";
L2: "ab";
R2: "cd";

Figure 3.13: An example showing why only marking error paths within the isolation subtree
is insufficient. Using the grammar on the left, the input ac is parsed and then edited by first
inserting ‘b’ (after ‘a’) and then ‘d’ (after ‘c’). After inserting ‘d’, the isolated subtree L needs to
be re-parsed, since its surrounding context was changed. However, there is no nested_errors
path leading down to L, and since P has no nested changes, it is optimistically shifted by the
parser. This then leads to a wrong parse tree, since despite the input abcd being valid, the parser
contains isolated errors, and P and L should have been re-parsed as P2 and L2, respectively.

from Figure 3.13 is solved when we assume that error nodes are marked from the root

down.

To mark isolated changes as errors during error recovery, Wagner uses the function

discard_and_mark_errors (shown in Listing 3.7 on the left). Its description contains the

following: ‘Any user modifications (textual or structural) within this subtree are marked

as unincorporated errors, and nested error attributes are set to record the path between

node and the location of each such error’ [88, p.99]. The description suggests that any

node that is unretainable and contains nested changes is marked with a nested_error

flag. However, the code only sets a node’s nested_error flag if one of its children has

local or nested errors. But since the function is called when traversing the tree from

top to bottom, the children are marked after their parent. This would mean that when

a parent checks if any of its children has errors, the children can’t possibly have been

marked yet. We thus re-implement this function and simply set a node’s nested_errors

flag if it has nested changes as shown in Listing 3.7 on the right.

3.5.3 Right-breakdown problem

In certain scenarios, isolated subtrees can cause a problem with the incremental parser’s

right-breakdown procedure. The problem occurs when, during parsing, an isolated subtree

is followed by an empty nonterminal, which was optimistically shifted, and another error

is found afterwards. We recall that after an optimistic shift the parser enters a verification

phase. The phase ends when a terminal symbol is shifted. If an error occurs during it,

the method right_breakdown is called to undo the optimistic shift and re-evaluate the

subtree’s contents. This is done by popping the subtree from the top of the stack and
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Figure 3.14: An example showing how also having a path of nested_errors flags from the
root down to the isolation node, enables the parser to find the isolated subtree during a re-parse.
However, the parser only re-analyses the isolated subtree if it has new changes, or if its surrounding
context was changed. In the example, inserting ‘d’ changes the surrounding context of isolated
subtree L. When the incremental parser reaches the node L, it thus re-inspects the subtree and
re-parses all previously isolated changes (i.e. nodes previously marked as errors). This allows the
parser to correctly parse the scenario from Figure 3.13.

breaking down its most right edge, shifting the children back onto the stack. As long as

there is a nonterminal on top of the stack this process is repeated until right-breakdown

can shift a terminal symbol. However, when an isolated subtree is broken down this way,

and it contains an error node in its most right edge, then the right-breakdown procedure

fails, as it assumes that the subtree only contains valid input. Figure 3.15 illustrates the

problematic scenario.

One way of solving this is to use the fix of Section 3.3.5, which also happens to solve

this problem. However, a second solution is possible3: if during right_breakdown an

isolated subtree ends up on the top of the stack, the routine is simply aborted and the

verification phase ends. This means that the isolated subtree is not broken down and

remains on the stack, and parsing just continues as normal. Since the parser couldn’t use

right-breakdown during the verification phase, it is likely that the error remains. However,

this just results in another isolation, e.g. in Figure 3.15 node S would be isolated as well.

Since this problem completely disappears when using the fix from Section 3.3.5 – if empty

nonterminals cannot be optimistically shifted, isolated subtrees cannot end up in the

verification phase – there is no need to use the solution presented here. However, if the

problem from Section 3.3.5 can be solved without the need to disallow optimistic shifts of

empty nonterminals, then this problem would remain, and the solution presented here

needs to be applied.
3This solution has been discussed with Wagner in a personal communication and was described by

him as ‘reasonable’ [87].
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1 def discard_and_mark_errorsW(node: Node):
2 node.discard()
3 if node.has_changes(reference_version, local):
4 if not node.local_errors:
5 node.local_errors = True
6 node.compute_presentation(reference_version)
7 if ∃child of node s.t.
8 (child.local_errors or child.nested_errors):
9 node.nested_errors = True

10 else:
11 node.nested_errors = False

1 def discard_and_markD(node: Node):
2 node.load(previous version )
3 if node.changed:
4 node.local_error = True
5 if node.nested_changes:
6 node.nested_errors = True
7 else:
8 node.nested_errors = False

Listing 3.7: Wagner’s original function (converted to Python) for discarding changes and
marking errors (left) and our re-implementation (right). The main difference between the two
functions is the way we mark nested errors. Since, when a node is discarded we haven’t processed
its children yet, we can’t possibly know whether any of the children contain errors. Instead we
can use the nested_changes attributes to mark errors. Like Wagner we consider any node within
an isolation that has unparsed changes, as an error. Thus any subtree that has nested changes,
will have nested errors once isolation is done. We can thus simply set the nested_errors flag of
any node that has nested changes.

3.5.4 Node reuse and error recovery

Section 2.8 described that during a re-parse, any node that is being reused needs to be

remembered so that it can not be reused twice. When cutting back the stack to find an

isolation node, we remove nodes from the parse stack again. At this point however, nodes

will already have been marked as reused, which means they cannot be reused again and

need to be recreated when parsing continues (see Figure 3.16 for an example). However,

removing nodes from the stack during error recovery is essentially like pretending that

they have never been parsed, and thus they shouldn’t need to be recreated afterwards.

There are two solutions to this problem. The obvious and most effective solution is

to simply remove all nodes from the reuse set that have been removed from the stack

during the search for an isolation node. This allows those nodes to be reused again when

parsing continues. However, this may break the modularity of incremental parsing and

error recovery, since we need to make the reuse set available during error recovery. An

alternative solution is thus to simply ignore the problem, and let top-down reuse take care

of the new nodes. After parsing has finished, it will automatically find the recreated nodes

and replace them with their equivalent from the previous version. However, this carries

a small overhead of creating new nodes only to immediately destroy and replace them

again. To mitigate this problem we can also modify ambig_node_reuse from Listing 2.11

to only add nodes to the reuse set if they have more than one child (see Listing 3.8). The

purpose of the reuse set is to keep parent nodes from being reused twice during parsing,

which can only happen if they have multiple children. Not adding parents with a single
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# Grammar
S: A B "b" "c";
A: "a";
B: ;

Figure 3.15: An example showing the interaction between right-breakdown and an isolated
subtree causing a bug in the routine. A parse tree has been generated and edited in a way that
causes the subtree A to be isolated. After the isolation the parser continues parsing. Empty
subtree B has no changes and can thus be optimistically shifted, and the parser enters the
verification phase. However, when the lookahead ‘c’ is processed, a parsing error occurs, and
right-breakdown is used to undo the optimistic shift. This leads to the isolation subtree being
broken down and its children being shifted onto the stack. This includes the child ‘x’, which is
not a valid input. However, since right-breakdown assumes all input to be valid, this causes a
runtime error.

child to the reuse set is thus a valid option and will allow such parent nodes to be reused

again even if they have been removed from the stack during error recovery.

3.5.5 Displaying errors

Once an error has been isolated, we need to show to the user what caused the error and

give them hints on how they can fix the problem. In his thesis, Wagner describes how

the isolation can be used to precisely highlight the user changes that led to the error, by

simply marking all changed but unparsed tokens within an isolated subtree as errors [88,

p. 103]. For example, if the user inserted or deleted a token which caused a parsing error,

then Wagner shows them the changed token with a hint that removing or re-entering that

token may fix the problem. Wagner’s way of presenting errors can be very useful when

the actual parse error happens far away from the change that caused it, in which case

other error recovery approaches can sometimes give unhelpful or misleading information

about the source of the error [59, 76, 20]. On the other hand, simply pointing to the

user change as the source of the error isn’t always useful either, especially if the changes

were intentional, as Figure 3.17 shows. Instead of relying on only one representation,

we can combine both approaches, so that the user receives all available information to

understand why an error occurred. Parse errors are highlighted with a red squiggly line,

and the change that caused the error is highlighted with a blue one (see Figure 3.18).

To display errors in the editor Wagner marks all user changes that couldn’t be retained

as errors using local_error flags and computes how those errors should be represented.

Since we also want to highlight the actual parse error, we need to mark the node that

caused the error as well. Once an error is fixed, marked error nodes need to be unmarked

again, so that the editor stops rendering them as errors. This can simply be done by
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Figure 3.16: An example showing how error recovery can result in nodes not being properly
reused. During re-parsing of the user edits, the incremental parser can reuse the nodes P, T, and
E before reaching a parsing error. This means that those nodes have been marked as reused
and cannot be reused again. During error recovery however, the nodes are popped from the
stack again in search of an isolation node, which is found with P. After isolating P, the parser
continues as usual. When reducing P to the symbol T we would normally reuse previous node T.
Unfortunately, it has already been marked as reused, so the parser needs to create a new node
instead.

1 def ambig_reuse_checkWD(prod: Symbol, children: List[Node]) -> Node:
2 for c in children:
3 if c is not a new node :
4 old_parent: Node = c.get_parent(previous version )
5 if old_parent.symbol == prod and old_parent not in reused list :
6 if len(old_parent.get_children(previous version )) > 1:
7 add old_parent to reused list
8 return old_parent
9 return Node(prod, children)

Listing 3.8: An updated function for ambiguous node reuse. Since only nodes with multiple
children can run the danger of being reused twice, we do not have to remember nodes with single
or no children (line 6). This allows us to reuse the same node again, even if it was previously
discarded during error recovery.
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Figure 3.17: An example showing that highlighting only the user changes when an error occurs
isn’t always sufficient to help the user understand the problem. Here, the user intended to replace
a while-loop with a for-loop. However, editing only the keyword is not enough, since the condition
also needs to be changed. The change thus causes an error when the parser tries to parse ‘<=’ (a
for-loop requires the condition to start with an assignment). The isolated subtree is shown on the
left, the error reporting is displayed on the right. Simply highlighting that the change from while
to for caused the error doesn’t help the user understand what went wrong. A more helpful error
message, in this case, would be to tell the user that the problem lies within the condition.

Figure 3.18: An example of an error being presented using both Wagner’s as well as a traditional
approach. The change responsible for the parsing error is shown with a blue squiggle. The actual
parsing error is shown with a red squiggle. Hovering over the for, tells the user that changing
the while is the cause of the error, while hovering over ‘<=’ shows more information about the
nature of the error.

unmarking a node when it is successfully shifted during a re-parse. However, often parse

errors can be resolved by changing the nodes preceding the error node, which means the

error node itself is never re-parsed. For instance, the error in Figure 3.17 can be resolved

by simply changing back the for to a while. The subtree expression, which contains

the marked error node, would be optimistically shifted since it has no changes. This

means the error node ‘<=’ is not visited again by the parser and thus can’t be unmarked.

To solve this, we simply store a reference to the actual error node on the isolation node.

When the isolation node is revisited during a re-parse, we unmark the referenced error

node, assuming it will be fixed. If the error remains, the node will be remarked again by

the error recovery. If the error is indeed resolved, the node has been unmarked and won’t

be rendered as an error any more.

Wagner’s algorithm marks nodes within an isolation as errors, if they can’t be retained.

However, since tokens cannot change their text-length or offset between the previous and

current version, they are always retainable. This means, they won’t be marked as errors
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and thus won’t be highlighted in the editor. For example, in Figure 3.17 the changed

node for is retainable and wouldn’t be marked as an error. We thus simply assume that

tokens are unretainable by default, which then allows them to be marked and displayed

as errors, if they contain changes that could not be successfully parsed.



Chapter 4

Incremental Parsing Extensions

Using incremental parsing and having access to an always up-to-date parse tree allows

an editor to return almost instant feedback of syntax errors and makes implementing

features such as syntax-highlighting effortless. Other common IDE features, however,

require a more condensed form of the parse tree, an abstract syntax tree (AST), to work

with, such as name binding, which provides an IDE with information about undefined or

unused variables and enables context-aware code completion. Section 4.1 of this chapter

thus explains how we can extend an incremental parser to generated and update ASTs

incrementally during parsing, and storing them along with the parse tree.

Despite Wagner’s incremental parsing algorithm being language agnostic and working

well for most standard languages, there are some languages that require additional work

prior to parsing. Such a language is Python, whose grammar requires indentation tokens

to be inserted into the program to denote the beginning and ending of blocks. Typically,

this is either done during the lexing phase, or as a separate phase between lexing and

parsing. Unfortunately, this requires the revisiting of the entire program in order to insert

the correct amount of indentation tokens, as a change of indentation at the beginning of

the program can invalidate indentations further down. While we can avoid unnecessary

parse tree changes by only updating indentation tokens in the parse tree if they were

changed, we are still required to scan the file from the top to the bottom. Section 4.2

thus shows how we can incrementally find and update only those lines in the program

whose indentation has changed, without the need to analyse the entire program. This is

then added as an additional phase between lexing and parsing, which repairs the parse

tree back to a state where it can be successfully parsed by the incremental parser.

81
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4.1 Incremental Abstract Syntax Trees

Parse trees are painful to work with: their nesting is partly dictated by the LR parser,

and is often very deep; they contain irrelevant tokens, which are necessary only for the

parser or to make the language more visually appealing to users; and child nodes are

ordered and only accessible via numeric indices. Instead, one would prefer to work with

an AST, providing a simplified view on the user’s data, where the tree has been flattened

as much as possible, with irrelevant tokens removed, and with child nodes unordered and

addressable by name.

This section first describes a simple (relatively standard) rewriting language that can be

used to create ASTs from parse trees. It then describes the novel technique that was

developed to make AST updates incremental.

4.1.1 Rewriting language

The simple rewriting language to create ASTs from parse trees is in the vein of similar

languages such as TXL [18] and Stratego [12]. In essence, it is a pure functional language

which takes parse tree nodes as input and produces AST nodes as output. Each production

rule in a grammar can optionally define a single rewrite rule. AST nodes have a name, and

zero or more unordered, explicitly named, children. The AST is, in effect, dynamically

typed and implicitly defined by the rewrite rules1.

An elided example from the Python grammar is as follows:

1 print_stmt : "PRINT" {Print(stmts= [])}

2 | "PRINT" stmt_loop; {Print(stmts= #1)}

3

4 stmt_loop : stmt_loop stmt {#0 + [#1]}

5 | stmt; {[#0]}

6

7 stmt : expr {#0}

8 | ...

9

10 expr : "VAR" {Var(name= #0)}

11 | ...

AST constructors are akin to function calls. Expressions of the form #n take the nth

child from the nonterminal that results from a grammar’s production rule. Referencing a

token uses it as-is in the AST (e.g. line 10); referencing a nonterminal uses the AST sub-

tree that the nonterminal points to. For example, Var(name=#0) means “create an AST
1This is not an important design decision; the AST could be statically typed.
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1 def reduceD(la: Node, p: Production):
2 ...
3 if p.has_rewriterule():
4 exec_rewriterule(la, p)
5

6 def exec_rewriteruleD(node: Node, p: Production):
7 astnode: AstNode = p.rewriterule.execute(node)
8 if not is_reusable_astnode(node.ast, astnode):
9 node.ast = astnode

10

11 def is_reusable_astnodeD(old: AstNode, new: AstNode):
12 if old is None:
13 return False
14 if old.name != new.name:
15 return False
16 if children are not the same :
17 return False
18 return True

Listing 4.1: During the reduction of a node using the production prod, we check if the production
has a rewrite rule (Lines 3–4). If a rewrite rule exists, it is executed which results in a new AST
node, which is then added as a reference ast to the result of the reduction, node (Line 7–9). If a
node was reused during a reduction, we can also check if the AST node is reusable, in which case
it doesn’t need to be replaced (Lines 11–18).

element named Var with an edge name which points to a VAR token” and Print(stmts=#1)

means “create an AST element named Print with an edge stmts which points to the

AST constructed from the stmt_loop production rule”. A common idiom is to flatten a

recursive rule (forced on the grammar author by the very nature of LR grammars) into a

list of elements (lines 4 and 5). Note that a rewrite rule can produce more than one AST

node (e.g. line 1 produces both a Print node and an empty list node).

4.1.2 Incremental ASTs

All previous approaches of which I am aware either batch create ASTs from parse trees

or use attribute grammars to perform calculations as parsing is performed (e.g. [11]). In

this subsection, I explain how Wagner’s incremental parser can be easily extended to

incrementally create ASTs (the changes are shown in Listing 4.1).

The mechanism adds a new attribute ast to nonterminals in the parse tree. Every ast

attribute references a corresponding AST node. The AST in turn uses direct references

to tokens in the parse tree. In other words, the AST is a separate tree from the parse

tree, except that it shares tokens directly with the parse tree. Sharing tokens between

the parse tree and the AST is the key to this approach since it means that changes to a

token’s value automatically update the AST without further calculation. Altering the

incremental parser to detect changes to tokens would be far more complex.
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In all other cases, we rely on a simple modification to the incremental parser. Nonterminals

are created by the parser when it reduces one or more elements from its stack. Every

altered subtree is guaranteed to be re-parsed and changed subtrees will either lead to

fresh nonterminals being created or previous identical nonterminals being reused. We can

therefore add to the parser’s reduction step an execution of the corresponding production

rule’s rewrite rule; the result of that execution then forms the ast reference of the newly

created or reused nonterminal. Note, that like the parse tree, the AST can also reuse

AST nodes from previous parses. Though this doesn’t happen automatically, it can be

easily added, by comparing the resulting AST node from the rewrite rule’s execution to

the ast reference stored on the nonterminal. If they are equivalent, the previous AST

node can be reused.

We then rely on two properties that hold between the parse tree and ASTs. First, the

AST only consists of nodes that were created from the parse tree (i.e. we do not have to

worry about disconnected trees within the AST). Second, the rewrite language cannot

create references from child to parent nodes in the AST. With these two properties, we

can then guarantee that the AST is always correct with respect to the parse tree, since the

incremental parser itself updates the AST at the same time as the parse tree. Figure 4.1

shows this process in action.

This approach is easy to implement and also inherits Wagner’s optimality guarantees: it

is guaranteed that we update only the minimal number of nodes necessary to ensure the

parse tree and AST are in sync.

4.2 Indentation-based languages

Indentation-based languages such as Python require more support than a traditional

lexer and parser offer. Augmenting batch-orientated approaches with such support is

relatively simple, but, to the best of my knowledge, no-one has successfully augmented

an incremental parser before. This section therefore describes how we can extend an

incremental parser to deal with indentation-based languages.

The basic problem can be seen in this simplified Python grammar fragment:

if ::= "IF" expr ":" suite;

while ::= "WHILE" expr ":" suite;

suite ::= "NEWLINE" "INDENT" stmts "DEDENT";

stmts ::= stmts stmt "NEWLINE"

| stmt "NEWLINE";
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a) b)

c) d)

Figure 4.1: Incremental AST construction, with the parse tree shown in black and the AST
in green. Subtrees that have been reused are in grey / light green. a) After typing the input
x, the incremental parser creates this parse tree fragment. b) After the expr nonterminal is
created, the rewrite language is run on it, creating an ast reference to an AST node Var. c)
After changing the input to print x, the incremental parser starts to update the parse tree and
the associated AST as shown in this in-process fragment. The stmt production’s rewrite rule
simply references whatever AST node its child produces, so stmt’s ast reference is the existing
Var node. stmt_loop however wraps its contents in a list (the green circle). d) The final parse
tree and AST. The print production rule creates a Print AST element with a child stmts which
is a list containing a Var node.

This grammar contains three special tokens NEWLINE, INDENT, and DEDENT which are

equivalent to the semicolon and opening/closing braces of a language like Java. They are

not directly specified by the user, but instead have to be generated by the parsing system.

A common way to do this is to insert a separate step between the lexing and parsing

phase. Other implementations may choose to integrate the insertion of the special tokens

into either the lexer or the parser.

As an example, let’s consider the following Python program:

a = 3
while True:
a -= 1
if a == 0:
break

print a
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We can see that with the lack of curly braces, the only indication that shows which

lines make up a block is their level of indentation. Thus, we cannot simply consume all

whitespace during lexing, as in most languages. Instead, line 3 should generate NEWLINE

and INDENT tokens before the ‘a’ token (as should line 5, before the ‘break’ token), and

(because of nesting) two DEDENT tokens must be added after the ‘break’. All other lines

need to end with a NEWLINE token. To parse this program successfully indentation tokens

need to be inserted as shown below:

a = 3 NEWLINE
while True: NEWLINE
INDENT a -= 1 NEWLINE
if a == 0: NEWLINE
INDENT break NEWLINE

DEDENT DEDENT print a NEWLINE

Note that indentation related tokens are solely for the parser’s benefit and do not affect

rendering: whitespace is recorded as per Section 2.6.3 and rendered as normal.

4.2.1 Indentation in a batch parser

The following shows an example for an indentation algorithm in a batch parser environment,

which would run as an additional phase between lexing and parsing (the algorithm assumes

that empty or comment-only lines have been removed):

1 indentl = [0]
2 for l in source.lines:
3 ws = get_leading_ws(l)
4 if ws > indentl[-1]:
5 l.insert(0, "INDENT")
6 indentl.append(ws)
7 elif ws < indentl[-1]:
8 while ws < indentl[-1]:
9 indentl.pop()

10 l.insert(0, "DEDENT")
11 if ws > indentl[-1]:
12 raise UnbalancedError()
13 l.insert(-1, "NEWLINE")

The algorithm first initialises the indentation level stack indentl with 0 (line 1). Af-

terwards it traverses the source code one line at a time (line 2). For each line it counts

the leading whitespace (line 3) and checks which one of two conditions is true. If the

whitespace is bigger than the last indentation level, the current line is indented so it

generates and inserts one INDENT token into the source code (line 4–5). It also appends

the current whitespace to the indentation level stack (line 6). If the whitespace is smaller,

the current line has been dedented so it needs to generate and insert one or more DEDENT

tokens, depending on how deeply nested the previous line was. For this it simply pops
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indentation levels from the stack and generates a DEDENT token each time until the

indentation level on the stack matches the whitespace in the current line (line 8–10). If

there is no match on the stack, the indentation is unbalanced and the algorithm returns

an error (lines 11–12). If the whitespace of the current line is the same as the top of the

indentation level stack, this means that the current line has the same indentation as its

predecessor which requires no additional tokens, apart from a NEWLINE token, which the

algorithm always inserts at the end of each line (line 13).

Unfortunately, generating indentation tokens using the traditional approach is not suitable

for an incremental parser since the algorithm can only generate indentation tokens for

the entire file. This would lead to so many changes, that effectively the entire parse tree

needs to be re-parsed. A partial solution to this is to only insert indentation tokens in

those lines where the existing indentation tokens don’t match anymore. However, the

algorithm would still require the analysis of every line in the program, which could lead

to slowdowns in the editor.

4.2.2 Incrementally handling indentation

The following explains how we can make a batch-orientated algorithm as shown in the

previous section, incremental. Similar to that algorithm, the incremental version runs as

an additional phase between the lexer and the parser. However, while the batch-orientated

version iterates over all lines of the program and inserts indentation tokens as needed, the

incremental version needs to be capable of independently updating only partial lines of

the program, removing existing indentation tokens or inserting new ones as appropriate.

Since the indentation of a line typically depends on a previous line, an incremental version

also needs to find all dependent lines of a change and update them as well.

To make this possible, we store in each line the leading whitespace level (i.e. the number

of space characters) and the indentation level. These notions are separated, because the

same indentation level in two disconnected parts of a file may relate to different leading

whitespace levels (e.g. in one if statement, 2 space characters may constitute a single

indentation level; in another, 4 space characters may constitute a single indentation level).

For example, the following is valid Python:

if x:
y

if a:
b

However, the following fragment is unbalanced (i.e. the file’s indentation is nonsensical)

and should be flagged as a syntax error:
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1 def calc_indentlD(l: Line):
2 l.ws = get_leading_ws(l)
3 if prev(l) == None:
4 l.indentl = 0
5 elif prev(l).ws == l.ws:
6 l.indentl = prev(l).indentl
7 elif prev(l).ws < l.ws:
8 l.indentl = prev(l).indentl + 1
9 else:

10 assert prev(l).ws > l.ws
11 prevl: Line = prev(prev(l))
12 while prevl != None:
13 if prevl.ws == l.ws:
14 l.indentl = prevl.indentl
15 return
16 elif prevl.ws < l.ws:
17 break
18 prevl = prev(prevl)
19 mark_unbalanced(l)

Listing 4.2: The indentation level calculation algorithm taking a line l as input. There are 4
cases, the first 3 of which are trivial, though the last is more subtle: (1) If l is the first line in
the file its indentation level is set to 0 (lines 3–4). (2) If l’s whitespace level is the same as the
previous line then l is part of the same block and should have the same indentation level (lines
5–6). (3) If l’s whitespace is bigger, then l opens a new block and has an indentation level 1
more than the preceding line (lines 7–8). (4) If l’s whitespace is smaller, then either l closes a
(possibly multi-level) block or the overall file has become unbalanced (lines 9–19). To determine
this we have to search backwards to find a line with the same leading whitespace level as l. If we
find such a line, we set l’s indentation level to that line’s level (lines 12–14). If no such line is
found, or if we encounter a line with a lower leading whitespace level (lines 16–17), then the file
is unbalanced and we need to mark the line as such (line 19) to force the editor to display an
error at that point in the file.

if x:
a

b

When a line l is updated, there are two cases. If l’s leading whitespace level has not

changed, no further recalculations are needed. In all other cases, the indentation level of

l, and all lines that depend on it, must be recalculated; indentation related tokens must

then be added or removed to each line as needed. Dependent lines are all non-empty2

lines after l up to, and including, the first line whose leading whitespace level is less than

that of l, or to the end of the file, if no such line exists.

We can define a simple algorithm to calculate the indentation level of an individual line

l. We first define every line to have attributes ws, its leading whitespace, and indentl,

its indentation level. prev(l) returns the first non-empty predecessor line of l in the

file, returning None when no such line exists. The algorithm is shown in Listing 4.2. In
2Note that comment-only lines also count as empty lines
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1 def update_dependent_linesD(l: Line):
2 while True:
3 next_l: Line = next(l)
4 if next_l is None:
5 break
6 calc_indentl(next_l)
7 if nextl.ws < l.ws:
8 break

Listing 4.3: Algorithm to update dependent lines. After the indentation level of a changed
line was updated, we need to check and potentially update all lines that are dependent on that
change, which are all lines after l up to, and including, the first line whose leading whitespace
level is less than that of l, or to the end of the file, if no such line exists.

practice, this algorithm tends to check only a small number of preceding lines (often

only 1). The worst cases, e.g. an unbalanced file where the last line is modified and all

preceding lines need to be checked, are O(n) (where n is the number of lines in the file).

Each time a line has been affected by this process, we need to check whether the

indentation tokens in the parse tree match the line’s current state. If they do not, the

tokens in the parse tree need to be updated appropriately (i.e. the old tokens are removed

and replaced). If a line is marked as unbalanced, a single UNBALANCED token is inserted;

otherwise we insert INDENT / DEDENT tokens according to the indentation level difference

between the line and its first non-blank predecessor.

Once a line has been updated, we need to check if any of its dependent lines need updating

as well, which we can do with the algorithm shown in Listing 4.3. The following example

shows a scenario where an increase in indentation requires a succeeding line to be updated

as well (NEWLINE tokens have been elided from the example):

def x():
    pass1
if x:
      pass2
pass3

INDENT

DEDENT

INDENT

DEDENT

def x():
    pass1
    if x:
      pass2
pass3

INDENT

INDENT

DEDENT
DEDENT

1:
2:
3:
4:
5:

1:
2:
3:
4:
5:

DEDENT

Increasing the whitespace before the if updates line 3 by removing the DEDENT token

before the if-statement. Since line 5 is the first line after line 3 with a smaller whitespace

level, it is a dependent line and thus needs to be updated, which adds an additional

DEDENT token before pass3. The next example shows the reverse of the previous one,

where the decrease of whitespace requires one of the following lines to be updated:
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def x():
    pass1
if x:
      pass2
pass3

INDENT

DEDENT

INDENT

DEDENT

def x():
    pass1
    if x:
      pass2
pass3

INDENT

INDENT

DEDENT
DEDENT DEDENT

1:
2:
3:
4:
5:

1:
2:
3:
4:
5:

The deletion of the whitespace before the if-statement in line 3, requires the insertion

of a DEDENT token at the beginning of that line. As before, line 5 is dependent on that

change and needs to be updated by removing one of the DEDENT tokens at the beginning.

Once all changed and dependent lines have been updated, added or removed indentation

tokens are marked as changed, similar to user changes. We then rely on the incremental

parser to reorder the tree appropriately and flag any UNBALANCED tokens as parsing errors.

4.2.3 Related work

Erdweg et al. propose a solution for generating layout-sensitive parsers using layout

constraints [24]. Using layout constraints, language grammars can enforce indentation

and alignment rules within the source code by defining shapes via annotating productions

in the grammar. These rules are then applied on the parse forest after parsing, removing

all parse trees which do not satisfy the constraints, thus disambiguating the input.

Unfortunately, layout constraints come with a significant performance penalty, e.g. leading

to parsing overheads of 80% on average when disambiguating Haskell programs.

Amorim et al. propose layout declarations based on layout constraints, improving usability

and performance, and adding the option to derive a pretty-printer from the specification [2].

Similar to layout constraints, layout declarations require annotating production rules

within a grammar, though defining them is less verbose according to [2, p. 5]. Whereas

layout constraints perform post-parse disambiguation, layout declarations disambiguate at

parse-time. To do this, nodes are annotated with position information during construction

of the parse tree. Each time a production is reduced that has annotated layout declarations,

those constraints are checked against the children of the production. If this check fails,

the parse tree is rejected and removed from the parse forest. While layout declarations

are a clever way of defining and enforcing layout-sensitive languages, it is not clear how

this technique can be applied to an incremental non-generalised parser, which doesn’t

have access to a parse forest containing all interpretations of a program. For example, in

an LR parser the decision as to whether a statement belongs to a certain block needs to

be made before that statement is parsed, as depending on this, the block is reduced before

or after the statement. In order to parse a language like Python, it is thus necessary to

insert indentation tokens into the parse tree before the parsing phase is initiated.



Chapter 5

Editing composed languages using

language boxes

Language composition needs an editing approach which can combine SDE’s flexible and

reliable approach to constructing ASTs with the ‘feel’ of traditional text editing. In

part due to MPS’s gradual evolution from a pure SDE to an approach which partially

resembles parsing, the idea is to do the opposite and start from a parsing perspective and

try to move towards SDE. Doing so implicitly rules out any approach which can accept

ambiguous grammars. Since the largest class of unambiguous grammars we can precisely

define is the LR(k) grammars [44] they were the obvious starting point.1 The following

sections show how an incremental parser which accepts LR grammars can be extended

with the notion of language boxes, and how one can edit those language boxes in the

language composition editor Eco.

5.1 Introduction

To explain the inner workings of Eco and language boxes, the following sections use as a

running example a composition of HTML, Python, and SQL, leading to the construction

of a flexible system equivalent to ‘pre-baked languages’ like PHP. In essence, it is shown

how a user can take modular languages, compose them, and use the result in Eco as

shown in Figure 5.1. This section outlines how this example composition is defined and

used from the perspective of a ‘normal’ end-user; the remaining sections are devoted to

explaining the techniques which make this use case possible, as well as explaining how

important corner cases are dealt with.
1Though note there are unambiguous grammars that are not contained within LR(k).
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(a)

(b)

(c)
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Figure 5.1: Eco editing a composed program. An outer HTML document contains several
Python language boxes. Some of the Python language boxes themselves contain SQL language
boxes. Some specific features are as follows. (a) A highlighted (SQL) language box (highlighted
because the cursor is in it). (b) An unhighlighted (SQL) language box (by default Eco only
highlights the language box the cursor is in, though users can choose to highlight all boxes). (c)
An (inner) HTML language box nested inside Python.

When an end-user creates a new file in Eco, they are asked to specify which language that

file will be written in. Let us assume that they choose the composed language named

(unimaginatively) HTML+Python+SQL which composes the modular HTML, Python,

and SQL languages within Eco. Although users can write whatever code they want in

Eco, this composed language has the following syntactic constraints: the outer language

must be HTML; in the outer HTML language, Python language boxes can be inserted

wherever HTML elements are valid (i.e. not inside HTML tags); SQL language boxes

can be inserted anywhere a Python statement is valid; and HTML language boxes can

be inserted anywhere a Python statement is valid (but one cannot nest Python inside

such an inner HTML language box). Each language uses Eco’s incremental parser-based

editor.

From the user’s perspective, their typical workflow for a blank document is to start typing

HTML exactly as they would in any other editor: they can add, alter, remove, or copy and

paste text without restriction. The HTML is continually parsed by the outer language

box’s incremental parser and a parse tree constructed and updated appropriately within

the language box. Syntax errors are highlighted as the user types with red squiggles.

The HTML grammar has been modified to specify where Python+SQL language boxes

are syntactically valid by referencing a separate, modular Python grammar. When

the user wishes to insert Python code, they press Ctrl + L , which opens a menu of
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Figure 5.2: Inserting a language box opens up a menu of the languages that Eco knows about.
Languages which Eco knows are valid in the current context are highlighted in bold to help guide
the user.

available languages (see Figure 5.2); they then select Python+SQL from the languages

listed which inserts a Python language box into the HTML they had been typing. The

Python+SQL language box can appear at any point in the text; however, until it is

put into a place consistent with the HTML grammar’s reference to the Python+SQL

grammar, the language box will be highlighted as a syntax error. Note that this does

not affect the user’s ability to edit the text inside or outside the box, and the editing

experience retains the feel of a normal text editor. As Figure 5.3 shows, Eco happily

tolerates syntactic errors – including language boxes in positions which are syntactically

invalid – in multiple places.

Typing inside the Python+SQL language box makes it visibly grow on screen to encompass

its contents. Language boxes can be thought of as being similar to the quoting mechanism

in traditional text-based approaches which use brackets such as J K; unlike text-based

brackets, language boxes can never conflict with the text contained within them. Users

can leave a language box by clicking outside it, using the cursor keys, or pressing Ctrl +

Shift + L . Within the parse tree, the language box is represented by a token whose type

is Python+SQL and whose value is irrelevant to the incremental parser. As this may

suggest, conceptually the top-level language of the file (HTML in this case) is a language

box itself. Each language box has its own editor, which in this example means each has

an incremental parser.
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Figure 5.3: Editing a file with multiple syntax errors. Lines 7, 9 and 12 contain syntax errors in
the traditional sense, and are indicated with horizontal red squiggles. A different kind of syntax
error has occurred on line 5: the SQL language box is invalid in its current position (indicated by
a vertical squiggle).

At the end of the editing process, assuming that the user has a file with no syntax

errors, they will be left with a parse tree with multiple nested language boxes inside it

as in Figure 5.1. In other words, the user will have entered a composed program with

no restrictions on where language boxes can be placed; with no requirement to pick a

bracketing mechanism which may conflict with nested languages; with no potential for

ambiguity; and without sacrificing the ability to edit arbitrary portions of text (even

those which happen to span multiple branches of a parse tree, or even those which span

different language boxes).

Eco saves files in a custom tree format so that, no matter what program was input by

the user, it can be reloaded later. In the case of the HTML+Python+SQL composition,

composed programs can be exported to a Python file and then executed. Outer HTML

fragments are translated to print statements; SQL language boxes to SQL API calls

(with their database connection being set to whatever variable a call to sqlite3.connect

was assigned to); and inner HTML fragments to strings. All of the syntactically correct

programs shown here can thus be run as real programs. Other syntactic compositions,

and other execution models of composed programs are possible (see Sections 5.4, 5.5) and

there is no requirement for Eco compositions to be executable or savable as text.
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5.2 Language boxes

Language boxes allow users to embed one language inside another. Language boxes have

a type (e.g. HTML), an associated editor (e.g. an extended incremental parser), and a

value (e.g. a parse tree). By design, language boxes only consider their own contents

ignoring parent and sibling language boxes. It is therefore necessary to define the notion

of the CST (Concrete Syntax Tree), which is a language box agnostic way of viewing the

user’s input. Different language box editors may have different internal tree formats, but

each exposes a consistent interface to the CST. Put another way, the CST is a global tree

which integrates together the internal trees of individual language boxes.

5.2.1 Language modularity

To make language boxes practical, languages need to be defined modularly, i.e. each

language is defined separately and may have several sub-components (e.g. grammar, name

binding rules, syntax highlighting). Eco allows users to define as many languages as they

wish. In order to create a composition, we can alter the grammar of a language L to

reference another language M by adding a symbol <M> to one or more of L’s production

rules.

In most cases, however, users will want to avoid hard-coding references to different

languages into ‘pure’ grammars. It is therefore allowed for grammars to be cloned

and (during initialisation only) mutated automatically. The most common mutation

is to add a new alternative to a grammar. For example, if we have a reference to

python and sql languages, we can create a reference from Python to SQL by execut-

ing python.add_alternative("atom", sql). This would be equivalent to altering the

Python grammar by adding the alternative “<SQL>” to the atom rule:

atom ::= "NAME"

| "NUMBER"

...

| atom_loop

| <SQL >;

Another common mutation is to create a subset of a language by changing the start rule

of a grammar. For instance, if we want to create a new language that only consists of

Python expressions, we can use python.change_start("expr").
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Figure 5.4: An elided example of an SQL language box nested within an outer Python language
box. From the perspective of the incremental parser, the tree stops at the SQL token. However,
we can clearly see in the above figure that the SQL language box has its own parse tree, which
thus forms part of the wider CST.

5.2.2 Language boxes and incremental parsing

Language boxes fit naturally with the incremental parser due to a property of CFGs

which is rarely of consequence to batch-orientated parsers: parsers only need to know the

type of a token and not its value. In this incremental parser approach, nested language

boxes are therefore treated as tokens. When the user inserts an SQL language box into

Python code, a new node of type SQL is inserted into the parse tree and treated as any

other token. From the perspective of the incremental parser for the Python code, the

language box’s value is irrelevant as is the fact that the language box’s value is mutable.

Language boxes can appear in any part of the text, though, in this example, an SQL

language box is only syntactically valid in places where the Python grammar makes a

reference to the SQL grammar. Nested language boxes which use the incremental parser

have their own complete parse trees, as can be seen in Figure 5.4.

5.2.3 Impact on rendering

While language boxes do not have any impact on the incremental parser, they do have a

big effect on other aspects of Eco. One obvious change is that they break the traditional

notion that tokens are n characters wide and 1 line high. Language boxes can be arbitrarily

wide, arbitrarily high, and don’t need to contain text at all. Eco cannot simply store

text ‘flat’ in memory and render it using traditional text editing techniques. Instead, it

must render the CST onto screen. However, efficiency is a concern. Even a small 19KiB
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Java file, for example, leads to a parse tree with almost 19,000 nodes. Rendering large

numbers of nodes soon becomes unbearably time-consuming.

To avoid this problem, Eco only renders the nodes which are currently visible on screen.

Eco treats newlines in the user’s input specially and uses them to speed up rendering.

Similar to Harrison [36], Eco maintains a list of all lines in the user’s input; whenever the

user creates a newline, a new entry is added. Each entry stores a reference to the first

CST node in that line and the line’s height. Entries are deleted and updated as necessary.

Scanning this list allows Eco to quickly determine which chunks of the CST need to be

rendered, and which do not. Even in this simple implementation, this approach scales to

tens of thousands LoC without noticeable lag in rendering.

5.2.4 Cursor behaviour

In a normal editor powered by an incremental parser, cursor behaviour can be implemented

as in any other editor and stored as a (line#, column#) pair. This approach was initially

used for Eco, but it has an unacceptable corner-case: nested language boxes create ‘dead

zones’ where it is impossible to place the cursor and to enter further text.

The solution is simple: Eco’s cursor is relative to nodes in the CST. In textual languages,

the cursor is a pair (node, offset) where node is a reference to a token and offset is a

character offset into that token. In normal usage, the arrow keys work as expected. For

example, when the cursor is part way through a token, simply increments offset ;

when offset reaches the end of a token, sets node to the next token in the parse tree

and offset to 1. / is slightly more complex: Eco scans from the beginning of the

previous / next line, summing up the width of tokens until a match for the current x

coordinate is found.

At the end of a nested language box, pressing sets node to the next token after the

language box while setting offset to 1 as described above. This means that if two language

boxes end at the same point on screen, Eco will seemingly skip over the outer of the

two boxes, making it impossible to insert text at that point. If instead the user presses
Ctrl + Shift + L , the cursor will be set to the current language box token itself instead

of the first token after the language box (since language boxes are tokens themselves,

this adds no complexity to Eco). When the user starts typing, this naturally creates a

token in the outer language box. In this way, Eco allows the user to edit text at any

point in a program, even in seemingly ‘dead’ zones (see Figure 5.5 for a diagrammatic

representation).
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(d)

(c)

(b)

(a)

Figure 5.5: Eco’s cursor behaviour in a program nesting SQL inside Python inside HTML.
The cursor is stored as a (node, offset) pair. (a) In normal program editing, the cursor behaves
exactly like any other editor. Typing with the cursor at this position will enter text into the SQL
language box right after the table token. (b) After pressing Ctrl + Shift + L , the cursor attaches
itself to the current node’s language box (<SQL>). Typing with the cursor at this position will
insert text into the Python+SQL language box between the tokens <SQL> and EOS. (c) After
pressing Ctrl + Shift + L again, typing will insert text into the HTML outer language box (after
the Python+SQL language box, and before the </body> token). (d) Assuming the cursor was as
in position (a) and the user pressed → , the cursor will be moved to this position.

When the cursor is moved to the boundary of a language box, i.e. the cursor is moved to

the end or the beginning of a box, the cursor always stays within the language box it

started at. Ctrl + Shift + L then either enters or exits the box, depending on the location

of the cursor relative to the box.

5.2.5 Copy and paste

Eco allows users to select any arbitrary fragment of a program, copy it, and paste it

in elsewhere. Unlike an SDE, Eco does not force selections to respect the underlying

parse tree in any way. Users can also select whole or partial language boxes, and can

select across language boxes. Eco currently handles all selections by converting them into

‘flat’ text and re-parsing them when they are pasted in. This seems like a reasonable

backup solution since it is hard to imagine what a user might expect to see when a
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partial language box is pasted in. However, some special-cases might be better handled

separately: for example, if a user selects an entire language box, it would be reasonable

to copy its underlying tree and paste it in without modification.

5.3 Other features

5.3.1 Syntax highlighting

The colouring of syntax is for many programmers one of the most important quality-

of-life improvements of programming editors as it significantly improves the readability

of their code [69]. Typically, syntax highlighting is implemented either via heuristic

pattern matching (i.e. regular expressions) or via parsing. While the former often leads

to inaccurate results, the latter can be very time consuming in large programs. Modern

IDEs, like Eclipse, have adapted to this problem by parsing small portions of the source

code using hand-coded incremental parsing [46] or parse the program in parallel to the

user typing, while others, like Atom have opted for a full incremental parser. Since Eco is

based on a full incremental parser, it doesn’t have these problems and thus adding syntax

highlighting is simple and straight forward. Eco employs syntax highlighting rules similar

to [40], which tell the renderer how to colour or highlight certain tokens. Highlighting

behaviour can also easily be improved by using parse tree information: for example, in

Python this allows us to highlight a function name identifier differently than a variable

identifier, even though they both share the same token type. Also, since each language

box has its own parser and lexer, the editor naturally highlights code within a language

box independently from the outer language, without any modification to the renderer.

5.3.2 Scoping rules

Modern IDEs calculate the available variable names in a source file for code completion,

and highlight references to undefined names. Eco implements (a subset of) the NBL

approach [45] which defines a declarative language for specifying such scoping rules. This

runs over the AST created by Section 4.1. References to undefined variables are highlighted

with orange squiggles. Users can request code completion on partially completed names

by pressing Ctrl + Space . Code completion is semi-intelligent: it uses NBL rules to only

show the names visible to a given scope (e.g. variables from different methods do not

‘bleed’ into each other). There was no need to make changes to the core of Eco to make

this work. I suspect that other analyses which only require a simple AST will be equally

easy to implement.
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Figure 5.6: An example of a non-textual language in Eco. The composition allows images to be
embedded into HTML and rendered directly within the editor. Users can toggle between different
representations by double clicking the language box.

5.3.3 Non-textual languages

Although this chapter’s main focus has been on textual languages, language boxes liberate

us from only considering textual languages. As a simple example of this, the HTML

language we defined earlier can use language boxes of type Image. Image language boxes

reference a file on disk. When an HTML file is saved out, they are serialised as normal

text. However, the actual image can be viewed in Eco as shown in Figure 5.6. Users

can move between text and image rendering of such language boxes by double-clicking

on them. The renderer correctly handles lines of changing heights using the techniques

outlined in Section 5.2.3.

As this simple example may suggest, Eco is in some senses closer to a syntactically-aware

word processor than it is a normal text editor. Although non-textual languages aren’t

explored in great detail in this thesis, it is easy to imagine appropriate editors for such

languages being embedded in Eco (e.g. an image editor; or a mathematical formula

editor).

5.4 Case study: Unipycation

Eco has been used as part of a case study, Unipycation [7], which investigated the basic

interpreter composition of the languages Prolog and Python. The composition allows

one-way embeddings, i.e. Prolog can be embedded into Python. Eco was used to write a

composed program in the form of a Connect4 game where all GUI elements were written

in Python, while Prolog was used for the AI. The program was then exported from

Eco into a format that the composed Python+Prolog VM can understand. Due to the
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1 <?php{
2 class X {
3 }
4 compile_py_meth("X", "def f(self):\n \\
5 x = 2\n \\
6 compile_php_func(\"\"\"function g() {\n
7 print_r(range(0, \$x));\n
8 }\"\"\")()\n \\
9 print_r(range(x))");

10 }?>

Figure 5.7: An example of a PyHyp composition with nested language boxes (on the left) and
its exported, textual representation (on the right). The example shows that writing compositions
by hand without the help of language boxes is difficult as embedded languages and even newlines
(for languages that don’t support multiline strings, such as Java) need to be escaped manually.

simplicity of the composition, this only required wrapping the content of the language box

inside a string and escaping strings within the box. Though basic, this case study already

showed Eco’s usefulness as writing even such basic compositions by hand, requiring the

manual escaping of strings, turned out to be rather cumbersome.

5.5 Case study: PyHyp

A second case study where Eco was utilised to write compositions is PyHyp [6]. Using

more fine grained compositions, PyHyp allows multiple and even nested embeddings

between the two languages PHP and Python. Python code can be embedded into PHP

code at any point where a PHP statement would be valid, e.g. class/function declarations,

if-blocks, for/while-loops, method calls, expressions, etc. Additionally, it allows a subset

of Python, expressions, to be embedded into PHP wherever PHP expressions are valid.

Separating compositions this way, i.e. embedding Python expressions separately from

normal Python language boxes, allows us to treat those boxes differently when exporting

the composed program according to the requirements imposed by the composed VM.

PyHyp further extends compositions to being able to nest languages deeper than the

two levels seen in the first case study. For instance it is possible to embed a Python

language box into PHP and then embed a PHP language box into the Python language

box. Further embeddings are possible. With multiple embeddings, especially nested ones,

writing PyHyp programs using a traditional text editor quickly becomes a tedious and

error prone task (see Figure 5.7). Eco also helps dealing with cross-language line numbers;

when a runtime error occurs within the code of a language box, its line number can be

accurately mapped back to the right location in the editor. This further emphasises the

importance of an editor like Eco when dealing with composed programs.
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Figure 5.8: An example showing name binding across languages. A Python method bar has
been embedded into a PHP class. The outline (bottom right) shows that the editor considers the
Python method as part of the PHP class. Referencing bar within another PHP function resolves
correctly to the Python method (line 4), while referencing the method outside of the class (line
12) or referencing undefined methods (line 5) generates warnings as one would expect.

5.5.1 Cross-language scoping

Eco also supports basic cross-language scoping. In PyHyp, both Python and PHP define

their own name binding rules as described in Section 5.3.2. In order to support scoping

across language boxes, we can simply merge together the results of the name binding

analysis of each language, with minor adjustments. For example, when merging a Python

method into a PHP class, we have to adjust the method’s path (i.e. within the language

box the method is at the top level, but when merged into PHP it needs to be at the

class level). For example, if we add the Python method bar into a PHP class X, where

X has the path class:X/ and bar has the path func:bar/, then the method is merged

by adding it to PHP’s name binding results, while changing its path to func:X/bar.

Furthermore, languages may use different names to define name binding types, e.g. in

PHP a function definition may be called func while in Python it is called method. This

means, that when merging a Python method bar in a PHP class X, its new path would

be method:X/bar, instead of func. In such cases it is thus necessary to extend the name

binding rules of a language with additional references. For example, in PyHyp the name

binding rules for PHP were extended so that a FunctionCall references both func and

method. Visibility is always defined by the outer language of the composition, e.g. in

order to decide if a PHP function is visible inside a Python function, Python follows the

scoping rules of the outer PHP language. Figure 5.8 shows an example of cross-language

scoping in Eco. Appendix D shows a more detailed description of cross-language scoping

including exemplary name binding rules.
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Figure 5.9: The Richards benchmark used in PyHyp. All benchmarks were written in three
versions: PHP, Python, and PHP+Python. The figure shows the mono PHP version on the left,
and the composed PHP+Python version on the right.

5.5.2 Benchmark migration

For the evaluation of PyHyp, the case study tested the performance of compositions

against their single-language equivalents. For this, three versions needed to be created for

each benchmark: one in PHP, one in Python, and one in PHP composed with Python.

All benchmarks started out as PHP programs. Each program was then converted into

Python, by manually replacing one PHP method at a time with a Python equivalent,

thus slowly migrating the PHP program into Python. Figure 5.9 shows an example.

5.5.3 A SquirrelMail plug-in

SquirrelMail is a venerable PHP web mail client. PyHyp and Eco were used to add

a SquirrelMail plug-in that uses the Python SymPy library. This is intended to show

that PyHyp can be used to add Python modules to relatively large existing systems.

In essence, the plug-in recognises mathematical formulae between triple backticks, and

uses SymPy to render them in traditional mathematical notation. Formulae in incoming

emails are automatically rendered; users sending emails with such formulae can preview

the rendering before sending. Figure 5.10 shows the plug-in in use, and the core parts of

the code within Eco.

The sympy_changebody_do function is called by SquirrelMail’s message_body hook (which

is also called upon viewing a message), receiving the content of the email as an argument.
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Figure 5.10: Example mails sent with the extended version of SquirrelMail. The PHP mail
client was extended such that it can visualise mathematical formulae using the SymPy Python
library. A portion of the plug-in code is shown in the right.

A regular expression finds all occurrences of formulae between backticks (line 53) and

passes them to the Python formulae_to_images function. This then uses SymPy to

convert the formulae to images (numbered by their offset in the array/list) into the

directory pointed to by the PHP constant SM_PATH (lines 61–68), and uses the URL of

the image in-place of the textual formula (line 56).

5.6 Testing

During Eco’s development testing has been an integral part of finding and fixing bugs in

all of its components. Many of Eco’s bugs were found using fuzz testing, leading to a

continuously growing test suite. Two notable examples are the bugs found in Wagner’s

error recovery algorithm which are described in Sections 3.3.5 and 3.5.3. At the time of

writing, Eco’s test suite consists of 302 tests, of which 150 specifically test the editor with

the remaining testing dependencies such as the parser and lexer.

5.6.1 Fuzz testing

Testing text editors can be difficult, especially when the user base is small. Even if the

editor is used throughout its development (e.g. all of Eco’s grammars were written within

Eco itself), this is insufficient to iron out all bugs. A solution to this problem is fuzz

testing [56], a form of testing where inputs are randomly generated or mutated. Eco’s

test suite includes a framework which takes as input a grammar and a program for that
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1 from random import shuffle
2 def fuzzy_deletionD():
3 load_file(input)
4 log("load_file({})".format(input))
5

6 for line in shuffle(getlines(input)):
7 cols = range(len(line))
8 for col in shuffle(cols)[0:5]: # restrict to 5 edits per line
9 move_cursor(line, col)

10 log("move_cursor({}, {})".format(line, col))
11 key_delete()
12 log("key_delete()")

Listing 5.1: Example of a fuzzy tests that loads a program (line 3), moves the cursor to a
random line and column in the input (lines 6–9) and deletes a character from that location (line
11). As its name suggests, shuffle returns a new list where all elements have been shuffled.
Every action is saved to a log, so that if a runtime error occurs, the test can be reproduced. Eco’s
test suite contains multiple fuzz tests, some of which only insert or delete characters, while others
do a combination of different actions including undo and redo.

grammar and then runs a variation of fuzzy tests. These tests simulate different random

actions, such as insertion or deletion of characters, moving of the cursor, or undoing or

redoing changes, and applying them to the current input (see Listing 5.1 for an example).

Each time an action is applied, the input is incrementally re-lexed and re-parsed. If an

action breaks the editor, i.e. any form of runtime error occurs, then the test fails and

stores a log of all actions used. This log can then be used to reproduce the error and

create a stand-alone test to be added to the test suite (an example of such a log can be

seen in Listing 5.2).

5.6.2 Minimising test logs

Each time a fuzz test discovers a bug, a log is saved which can be used to reproduce the

test and add it to Eco’s test suite. Unfortunately, these logs can get very long, using

thousands of actions before the actual error occurs, many of which are irrelevant to the

bug. This not only unnecessarily increases the overall runtime of the test suite when the

test is added to it, but more importantly it makes it harder to find the cause of the error

and fix the bug. In most cases the bug can be reproduced with only a handful of actions.

We can reduce the log to those actions by removing any action that doesn’t change the

outcome of the test generated from that log. However, minimising the log by hand is a

time consuming and tedious process as each time an action is removed the test needs to

be rerun to make sure its outcome is still the same. Therefore, Eco’s testing framework

includes a minimiser, which heavily reduces the size of a log by removing all actions

that are not needed to reproduce the bug. Although its functionality is very basic, the
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1 load_file("deltablue.py")
2 move_cursor(5, 10)
3 key_delete()
4 move_cursor(5, 4)
5 key_delete()
6 move_cursor(5, 8)
7 key_delete()
8 move_cursor(5, 7)
9 key_delete()

10 move_cursor(5, 2)
11 key_delete()
12 move_cursor(22, 2)
13 key_delete()
14 move_cursor(22, 6)
15 key_delete()
16 move_cursor(22, 5)
17 key_delete()
18 move_cursor(22, 9)
19 key_delete()
20 move_cursor(22, 1)
21 key_delete()

22 move_cursor(7, 18)
23 key_delete()
24 move_cursor(7, 16)
25 key_delete()
26 move_cursor(7, 5)
27 key_delete()
28 move_cursor(7, 12)
29 key_delete()
30 move_cursor(7, 2)
31 key_delete()
32 move_cursor(14, 8)
33 key_delete()
34 move_cursor(14, 16)
35 key_delete()
36 move_cursor(14, 3)
37 key_delete()
38 move_cursor(14, 12)
39 key_delete()
40 move_cursor(14, 6)
41 key_delete()
42 ...

Listing 5.2: Example log file of a fuzzy test. The log can simply be copied into Eco’s test suite
to create a test from it. However, since logs can become very large, it is often necessary to reduce
their size to decrease their runtime and help with debugging.

minimiser can reduce a log containing thousands of actions to a few dozen. Often, those

minimised logs can be reduced further by hand as some actions are not caught by the

basic minimiser. For example, sometimes an action, though unnecessary to reproduce

the bug, changes the program in a way that causes later actions to trigger the bug.

Thus, removing an action that deletes a newline or a character requires adjusting the line

numbers and columns of all following actions. However, this increases the complexity of

the minimiser and in most cases the basic minimising functions are sufficient to generate

tests small enough for debugging.

Minimising a test log is simple: we start at the top and remove one action at a time and

rerun the test to check if the minimisation still produces the bug. If the removal of an

action changes the error message or avoids the bug all together, the log is reverted to its

last ‘failing’ version. Actions are removed in pairs since one action moves to cursor to a

random position and the other deletes or inserts a character. To improve the performance

of the minimiser there is an additional mode which groups together actions by the line

number they occur in and removes all of them together (e.g. for the log in Listing 5.2

this would remove 10 actions at a time). This group mode is run first to get rid of the

major bulk of unneeded actions, and is then followed by the more fine-grained pair mode

described earlier. I also experimented with a binary chop mode which tries to remove the

log by half each time. However, while faster in some cases, most tests have their salient
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1 def minimiseD(log: String, mode: int, error: Exception):
2 changed = True
3 while changed:
4 line = 1 # skip over load_file
5 changed = False
6 while line < len(log):
7 temp = log[:] # create a copy of log
8 del log[line:line+mode] # remove actions
9 try:

10 run(log)
11 except Exception as e:
12 if e == error: # exception remains
13 changed = True
14 continue
15 log = temp
16 line += mode
17 return log

Listing 5.3: A function to reduce a log generated from a fuzzy test. The minimising function
takes as input a log, a reduction mode (in form of the amount of lines to be removed each
iteration), and an error. It then attempts to remove actions from the log according to mode (line
8) until no more actions can be removed. After each removal, the test log is rerun to make sure
that it still reproduces the same bug (line 9-14). If it doesn’t the last removal is reverted (line
15). Otherwise, we continue. Once no more actions can be removed (i.e. no more changes were
made to the log), the minimised log is returned (line 17).

parts distributed throughout the log, and are thus not amenable to such a mode. Each

mode runs until no more actions can be removed at which point the next mode takes

over. Finally, when no more actions can be removed, the log has been minimised and is

stored to disk. Listing 5.3 shows the minimise function used for both modes.



Chapter 6

Lexing language boxes inside

comments and strings

The introduction of language boxes introduces a new editing problem into the editor: what

should happen if we comment out a line containing a language box or insert a language

box into a string? A naive solution would be to either ignore the language box or flatten

it, but neither solution is desirable, as they lead to errors or loss of information. This

chapter first explains the nature of the problem and then introduces multinodes which

allow language boxes to be integrated into other tokens while retaining their structure

and identity.

6.1 The problem

To illustrate the problem, let’s assume, as our running example, the following scenario: a

user writes a program in which they use a language box to embed an SQL statement into

some arbitrary language’s expression:

x = 1 + SELECT count(*) FROM table

When running the program the user spots unwanted behaviour and suspects that the

SQL statement is at fault. In order to debug the program, they comment out the SQL

statement, like so:

x = 1 /* + SELECT count(*) FROM table */

108
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This scenario makes it obvious why we need the ability to mix language boxes with

comments, however it is not clear how this can be achieved with a traditional lexer.

The obvious solution is to have the lexer ignore the language box boundaries and just

process its content like any other code. This results in the flattening of the language

box and integration of its content into the comment token, producing the following

tokenisation of the program:

x
var

=
eq

1
int

/* + SELECT * FROM table */
comment

While this solves the problem, as the language box has now been successfully commented

out and will be ignored by the parser, it creates another problem: flattening the language

box has destroyed its parse tree. When the comment is removed again, the editor is

unable to recover its original structure, as the previous contents of the language box will

now be lexed using the outer language’s lexer. Additionally, any meta-data stored within

its nodes will be lost as well.

6.2 Outlines of a solution

Ideally, we want to allow the user to comment out language boxes or insert them into

strings without destroying them, while hiding them from the parser at the same time.

Their content, however, must remain visible to the user and the source code renderer to

allow further editing.

The solution to this is to introduce another node type, the multinode. This is almost

identical in nature to language boxes: the outer parser perceives such nodes as tokens,

therefore only needing to check their type, but the renderer is able to access their children.

A commented out language box is thus housed under a multinode ‘comment’: the language

box retains all of its settings, but the outer parser sees only a node with type ‘comment’.

Unlike language boxes, whose content is completely separated from the outer language’s

lexer and parser, multinodes can be re-lexed by the lexer and their content can be moved

outside of the node or combined with other multinodes. On the other hand, multinodes

cannot, and don’t need to be nested like language boxes, since from a parsing perspective,

they still represent a single token which can’t be nested. Figure 6.1 shows how our

running example would be represented inside the parse tree using multinodes.
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Figure 6.1: An example of an elided parse tree where a language box has been included inside a
comment token using a multinode. Since the multinode appears as a token and is of type comment
it is being ignored by the parser. However, both lexer and renderer can access its children for
future processing and displaying. More importantly the language box’s contents remain intact.

6.3 Incrementally lexing multinodes

The support for multinodes requires no changes to the parser. However, we need to

modify both the lexer (i.e. the tokeniser), which creates tokens from parse tree nodes,

and the incremental lexer, which merges those tokens back into the parse tree. We first

need to extend the lexer, allowing it to process language boxes when they appear within

tokens such as strings and comments, which is described in Section 6.3.1. We then modify

the incremental lexer to create multinodes during the merging phase, when appropriate,

while continuing to reuse as many nodes as possible, which is described in Sections 6.3.2,

6.3.3, and 6.3.4.

6.3.1 Matching language boxes in the lexer

We can easily extend a lexer with support for language boxes: the idea is to treat

a language box like a special character. While the language box cannot be directly

referenced within lexing rules, it is caught by wildcards, such as the match-all pattern

(e.g. ‘.*’), and negated character ranges (e.g. ‘[ˆa]+’). This allows the lexer to match

language boxes within rules such as comments (e.g. ‘//[^\n]*’ or ‘/\*.*?\*/’) or strings

(e.g. ‘\"[^\"\n]*\"’). Listing 6.1 shows a small fragment of a lexer with extensions that

allow it to match language boxes.

When the lexer matches text that contains a language box, it returns a token whose value

is a list of strings and language boxes instead of a single string (from here on we call
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1 def match_oneD(node: Node, pos: int, pattern: RegexPattern) -> bool:
2 if pattern == ".":
3 # Wild card always matches
4 return True
5

6 if type(node) is Languagebox:
7 return False
8

9 char: String = getchar(node, pos) # get character at pos in node’s value
10 if pattern == char:
11 return True
12 return False
13

14 def match_rangeD(node: Node, pos: int, pattern: RegexPattern) -> bool:
15 if type(node) is Languagebox:
16 if pattern.neg:
17 # Negated char ranges can never exclude a language box
18 return True
19 return False
20

21 char: String = getchar(node, pos)
22 if (pattern.neg and ord(char) not in pattern) \
23 or (not pattern.neg and ord(char) in pattern):
24 return True
25 return False

Listing 6.1: Excerpt of a lexer that operates on parse tree nodes. Support for language boxes
has been added by extending the methods responsible for matching characters. The method
match_one matches exactly one character, while match_range matches a normal or negated
range of characters (e.g. ‘[a-z]’ or ‘[ˆ"]’). Language boxes automatically match the wildcard
‘.’ (lines 2–4) but can’t be matched by any other character (lines 6–7). A character range can
only match a language box if the character range is negated (line 16–18) and cannot be matched
otherwise (line 19).

such a token a multitoken). For instance, lexing the running example would result in the

following tokens (where lbox represents the language box within the comment):

(‘x’, id), (‘=’, eq), (‘1’, int), ([‘/* +’, lbox, ‘*/’], comment)

When the incremental lexer merges these tokens back into the parse tree, tokens that

contain multiple items are converted into multinodes, leading to the parse tree seen in

Figure 6.1.

6.3.2 Merging multinodes into the parse tree

Naively implemented, creating multinodes and merging them back into the parse tree is

simple: first we remove all re-lexed nodes from the parse tree, and then insert the new

tokens back into the tree. If, as a result of incremental lexing, a token X is replaced by
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a list of tokens (i.e. a token containing a language box), then we create a multinode of

the same type as X and insert the list of tokens into that node. Thus, from the parser’s

perspective, there is still a single token as before; but from the user’s (and the renderer’s)

perspective there is now a list of tokens at that point. As described in Section 2.5, this

naive way of merging nodes back into the parse tree unnecessarily destroys and recreates

many nodes (including multinodes), thus increasing memory usage. The following sections

describe how we can extend the optimised merging algorithm from 2.5.7 to intelligently

merge multinodes and reuse old nodes wherever possible.

The extended algorithm is explained in Sections 6.3.3 and 6.3.4. The addition of multinodes

adds another level of complexity to the merging algorithm and thus may make some of its

details hard to understand. The aim of the following sections is thus to give an overview

of the algorithm, while Section 6.4 contains several examples that may help the reader

understand its finer details.

6.3.3 Iterating multitokens and multinodes

The merge_back algorithm from Section 2.5.7 receives as input two lists, one containing

newly generated tokens and another containing the nodes in the parse tree that were

processed during re-lexing. Previously, the algorithm could simply iterate over the two

lists and merge new tokens from the first with old tokens from the second list. However,

with the introduction of multinodes, both lists can now contain a new element type:

generated tokens may include multitokens, while processed nodes may contain multinodes.

To deal with them appropriately, we create two generator functions, which iterate over the

lists and deal with the new types by iterating over and returning their children instead of

returning the multitoken/multinode itself (see Listing 6.2).

Processing the children of multitokens and multinodes separately makes it easier to reuse

existing multinodes as well as match generated tokens with existing ones from the previous

version of the parse tree. For example, when two multinodes are merged into one, the

first multinode can be reused and tokens from the other can simply be moved over to the

first. Similarly, when splitting up a multinode into two, we can reuse the multinode for

the first part of the split, and for the second, create a new multinode and simply move

over the remaining tokens from the first.

6.3.4 A new merge method

The new merge algorithm is shown in Listing 6.3. It extends the merge algorithm from

Section 2.5.7, allowing it to merge multitokens back into the parse tree by creating and
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1 def iter_genD(tokens: List[Token]) -> Token:
2 for t in tokens:
3 if t is a multitoken :
4 for x in t.value:
5 yield (x, t.type)
6 else:
7 yield t
8 while True:
9 yield None

10

11 def iter_readD(nodes: List[Node]) -> Node:
12 for n in nodes:
13 if n is a multinode :
14 # since we are removing elements from the list in
15 # merge_back we need to create a copy to not skip anything
16 for x in list(n.children):
17 yield x
18 else:
19 yield n
20 while True:
21 yield None

Listing 6.2: Custom iterators for generated tokens and processed nodes that handle multitokens
and multinodes by iterating over their children and returning them one at a time (Lines 3-5
and 13-17). The remaining code is a simple iterator functionally similar to the one used in the
old merge_back function. Once all elements of a list have been processed the iterator continues
to return None. This avoids having to catch a StopException within the merge_back function,
which succeeds as soon as both lists return None.

removing multinodes where necessary. The new functionality can be summarised as

follows: when tokens that are part of a multitoken are being merged, the algorithm

either creates a new multinode or reuses a previous one if it exists. Similar to the

original algorithm, the new algorithm also tries, whenever possible, to merge tokens by

overwriting existing nodes in the parse tree. Additionally, the new algorithm then also

moves those overwritten nodes out of or into multinodes as appropriate. Once all children

of a multitoken have been merged, the algorithm continues to merge tokens as normal.

The remainder of this section explains the algorithm in more detail.

The new merge algorithm starts by using the new generator functions from Listing 6.2

to create iterators for the generated tokens and processed nodes (lines 2–3). When the

algorithm encounters the first child of a multitoken (line 14), this and all following tokens

are merged into a multinode current_mt. If a multinode already exists at that location,

which can be determined from the processed node old, it can be reused (lines 51–53).

Otherwise a new one is created (line 55). We must keep a list of reused multinodes, so

that they can only be reused once, since splitting a multinode into two would otherwise

result in the first multitoken reusing the old multinode, and the second multitoken then

attempting to reuse it again. Once all elements of a multitoken have been merged, the
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1 def merge_backD(gen: List[Token], pro: List[Node]):
2 generated: Iter[Token] = iter_gen(gen)
3 processed: Iter[Node] = iter_read(pro)
4 old: Node = processed.next()
5 new: Token = generated.next()
6 last: Node = old.previous_token()
7 newlen = oldlen = 0
8 reused: Set[Node] = set()
9

10 while old or new:
11 if new is first token after multitoken :
12 last = current_mt
13 current_mt = None
14 if new is first child of multitoken :
15 current_mt = mk_multi(old, reused)
16 insert_after(last, current_mt)
17

18 if oldlen >= newlen + len(new): # Insert
19 insert_after(last, new, current_mt)
20 last = new
21 newlen += len(new)
22 new = generated.next()
23 elif oldlen + len(old) <= newlen: # Remove
24 remove(old)
25 oldlen += len(old)
26 old = processed.next()
27 else: # Overwrite
28 old.update(new)
29 if old or new are child of multi and old.parent != current_mt:
30 remove(old)
31 insert_after(last, old, current_mt)
32 last = old
33 oldlen += len(old)
34 newlen += len(new)
35 new = generated.next()
36 old = processed.next()
37

38 def insert_afterD(last: Node, new: Token, mt=None):
39 if new is first child of multitoken :
40 mt.insert(0, Node(new))
41 else:
42 last.insert_after(Node(new))
43

44 def removeD(node: Node):
45 parent = node.parent
46 parent.remove(node)
47 if parent is empty multinode :
48 remove(parent)
49

50 def mk_multiD(old: Node, reused: Set[Node]) -> multinode :
51 if old.parent is a multinode and old.parent not in reused:
52 reused.add(old.parent)
53 return old.parent
54 else:
55 return new multinode

Listing 6.3: Extension of the merge_back algorithm from Listing 2.5, adding support for
multinodes and multitokens. For simplicity we assume that len(None) returns 0.
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algorithm returns to merging tokens as per usual by setting current_mt to None (lines

11–13). If two multitokens appear immediately next to each other, lines 11–13 first

finalise the first multinode and assign it to last, so that lines 14–16 can then insert a

new multinode immediately afterwards.

The insertion (lines 18–22) and deletion (23–26) parts of the old merge algorithm remain

largely the same. The only change is the function insert_after, which has been altered

so that the first child of a multitoken is inserted at the beginning of the multinode, since

inserting it after last would otherwise insert it outside of the multinode.

The overwrite part requires some more changes, since it is responsible for moving over-

written nodes in and out of multinodes if necessary (lines 29–31). For example, if part of

a multitoken overwrites a normal node, that node needs to be moved inside the multinode.

If a normal token overwrites a multinode child, then that child needs to be moved outside

of the multinode. Also, if part of a multitoken overwrites a multinode child, but the

latter’s parent is not the same as the current multinode, it needs to be moved from its

old multinode into the new one. In all other cases, nodes are overwritten as per usual

without the need to move them (line 28). Anytime a node is moved out of a multinode,

whether it’s removed entirely or just moved somewhere else, and the multinode becomes

empty, it needs to be removed from the parse tree (lines 47–48).

6.4 Examples

This section shows some practical examples of scenarios each highlighting different parts of

the algorithm from Listing 6.3. To help the understanding of the algorithm all explanations

reference the relevant parts of the algorithm via line numbers. For the sake of brevity

all examples have been stripped of whitespace and most nonterminals. Language boxes

are represented as single tokens (as they appear to the lexer) eliding their underlying

parse trees. While the examples shown here suffice to show all facets of the algorithm,

Appendix E includes some additional examples that show how the algorithm handles

some other scenarios.

6.4.1 Creating multinodes

This example shows the creation of a multinode after the user commented out a line

containing a language box and uses the Overwrite and Remove branches of the algorithm.

Consider the following program:

//x = SELECT x FROM y * z
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After re-lexing, the lexer returns the following lists of generated tokens and processed

nodes which are passed over to the incremental lexer’s merging algorithm:

generated tokens processed nodes

([‘//x=’, lbox, ‘*z’], comment) //x = <SQL> * z

The lexer has combined all nodes into a single multitoken of type comment. This means

the algorithm needs to create a new multinode and move all processed nodes from the

parse tree into this node. At the same time it has to combine the nodes //x and =

as well as * and z into a single node, update their types and values and remove the

left-over nodes. The following figure shows the transition from the old parse tree to the

new one (crossed out nodes mean they have been deleted from the parse tree; the arrows

show nodes moving from their old location to the new one within the multinode; newly

created nodes are coloured orange, merely updated nodes remain white):

The following explains the merging process step-by-step, referencing lines within the

merge algorithm from Listing 6.3 and showing a representation of the parse tree after

each step. After initialising the generators, new is set to the first generated token ‘//x=’

while old is set to node //x . Since new is the first child of a multitoken, we create a

new multinode, assign it to current_mt, and insert it into the parse tree (lines 12–13):
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Since both values oldlen and newlen are 0 we end up in the Overwrite branch of the

algorithm. We first overwrite the value of the node //x with ‘//x=’ and set its type to

comment (line 28). Since new is a multitoken child and old’s parent is not current_mt,

we remove //x= from the parse tree and insert it into current_mt (line 23–32):

Afterwards, we set last to node //x= , increase oldlen and newlen, and retrieve the

next elements from both iterators (lines 33–37). The next generated token is lbox (i.e. the

language box), the next processed node is = . The new values of oldlen (3) and newlen

(4) tell us that a node ( = ) was combined into another node, and thus needs to be removed

from the parse tree (line 24):

We increase oldlen and set the next processed node, the language box, to old (lines

25–26). With oldlen and newlen now both being 4, we yet again end up in the Overwrite

branch. Since old and new are the same, updating only changes the node’s type. The

language box node is then inserted after last (i.e. //x= ), which automatically moves it

inside the multinode:
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A language box always has a length of 1 so both oldlen and newlen are increased to 5,

which means the Overwrite branch is used again. We set last to the language box and

the next generated token to ‘*z’, and the next processed node to * . We then overwrite

node * with ‘*z’ and insert it after the language box:

Next we increase newlen to 7 and oldlen to 6, and set new to None and old to node z .

We end up in the Remove branch of the algorithm and remove node z :

Afterwards, both old and new are None and the algorithm terminates.

6.4.2 Merging multiple multinodes

In the following scenario two strings are combined into one. As both strings contain

language boxes, and are thus internally represented as multinodes, this example shows

the merging of two multinodes. It also highlights how the algorithm avoids destroying

and recreating multinodes by reusing existing ones, whenever possible. Let’s consider the

following program:

x = "a SELECT * FROM table b" + "c DELETE FROM table d"

Now we assume the user deletes the two quotes and the plus from the middle, thus joining

both strings together. After re-lexing, the lexer generated a single multitoken while the

list of processed nodes contains two multinodes:



Chapter 6. Lexing language boxes inside comments and strings 119

generated tokens processed nodes

([‘"a’, lbox1, ‘bc’, lbox2, ‘d"’], string) multinode multinode

The lexer has merged the two multinodes into one while also combining the two nodes

‘b’ and ‘c’ into a single token ‘bc’. The following figure shows an overview of how the

incremental lexer handles the merging of the two multinodes (nodes untouched by the

algorithm are greyed out):

The first two steps of the algorithm use the Overwrite branch to overwrite the node "a

and the first language box (lbox1) and move them into a multinode. However, since

the first multinode was reused (lines 51–54) and both nodes are already children of it,

only their types are updated (line 28). The next processed node is b which needs to be

overwritten with ‘bc’. Again, since b is already inside the target multinode it doesn’t

need to be moved:

The next generated token is the second language box (lbox2) with processed node c

which is part of the second multinode. The values oldlen and newlen were increased to

4 and 5, which means we use the Remove branch of the algorithm to remove node c ,

which was merged with b in the previous step:
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Afterwards, oldlen is increased to 5 and old is set to the second language box, while

new remains lbox2. With oldlen and newlen being equal, we again use the Overwrite

branch to update the language box with itself. This time, however, old’s parent doesn’t

match the target current_mt (lines 29–30), so the language box is removed from its old

parent and moved into the first multinode.

The same applies to the next processed node d" , which is removed from its parent and

inserted into current_mt. Afterwards, since the second multinode is now empty, it is

removed from the parse tree (lines 47–48).

6.4.3 Splitting multinodes

The following example is the reverse of the previous example: a string containing two

language boxes is split up causing a multinode to be split into two. This example shows

the use of the Insert branch, which we have not seen so far. It also shows what happens

when two multitokens appear next to each other, which triggers both conditions in line 11

and 14. Let’s consider the following program that has a string with two language boxes

inside of it:

x = "a SELECT * FROM table bc <img src="a.jpg"> d"
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Now the user moves the cursor in-between bc and inserts two double-quotes (""), thus

splitting up the string into two separate strings. After re-lexing, the lexer returns the

following generated tokens and processed nodes:

generated tokens processed nodes

([‘"a’, lbox1, ‘b"’], string)
multinode

([‘"c’, lbox2, ‘d"’], string)

The lexer has generated two multitokens, both of which contain a language box. This

means that the algorithm will have to create an additional multinode for the second string

and move some of the nodes from the previous multinode over to it. If the user had only

inserted a single quote the algorithm would perform similar to what is described below,

except that the nodes after the quote are inserted directly into the parse tree instead of a

new multinode. The following figure shows an overview of how the algorithm splits up a

multinode into two:

Similar to the previous example, the algorithm begins by reusing the old multinode and

overwriting the first three nodes without moving them. While node "a and the language

box remain the same, node b""c is overwritten by ‘b"’:

This results in oldlen=7 and newlen=5, with old being set to the HTML language box,

and new being ‘"c’. Since ‘b"’ was the last child of the multitoken, the multinode is
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complete, and current_mt is set to None, while last is set to the multinode so that

following tokens can be inserted after it (lines 11–13). However, since ‘"c’ is also the first

child of a multitoken, and old’s parent has already been reused, we now create a new

multinode and insert it immediately after the old one (line 14–16):

Afterwards, we end up in the Insert branch of the algorithm (lines 18–22), in order to

insert the new token ‘"c’ into the parse tree. However, since the token is the first child of

a multitoken, it is inserted into the new multinode instead (lines 39–40):

For the next two generated tokens lbox2 and ‘d"’, we use the overwrite branch again.

Although the parent of both remaining processed nodes, <HTML> and d" , is already

a multinode, it doesn’t match current_mt and so they both have to be moved (lines

29–32):



Chapter 7

Automatic language box detection

This chapter introduces a new algorithm that allows an editor to detect when a user writes

code in a language other than the main language. It then automatically creates a language

box and moves the written code into it, without the need for any user interaction. The

aim is to improve the user’s workflow, which otherwise requires them to insert language

boxes explicitly and manually. Since many language compositions are ambiguous it is

naturally impossible to perfectly predict the user’s intentions.1 Fortunately, it is possible

to do a “good enough” job by employing heuristics, which can be improved further by

manually tweaking compositions to deal with some language specific edge cases. The

chapter is structured as follows: Section 7.1 describes how we can use parsing errors to

find automatic language boxes, how we can present multiple solutions to the user, and how

automatically inserted language boxes can also automatically be removed again. Section

7.2 describes some of the limitations of automatic language boxes. Section 7.3 describes

the implementation of recognisers, which are used during the detection of automatic

language boxes. Section 7.4 discusses related work in this area. Appendix F summarises

the algorithms shown in this chapter and adds some additional details.

7.1 Using errors to detect language boxes

When reading a composed program it is generally easy for a programmer to tell where

a user intended to embed a different language. For an algorithm, however, this is not

as simple. Many composition are even so inherently ambiguous that it is, by definition,

impossible to determine where one language ends and another begins, for human or

machine. Knowing we can’t do a perfect job, the challenge is thus to find a ‘good enough’

heuristic that identifies as many opportunities for the insertion of language boxes as
1And sadly the technology to read their minds isn’t quite there yet [67].

123
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(a) Python and SQL (b) Java and Python

Figure 7.1: Two examples showing the attempted composition of languages without the use of a
language box. Both compositions result in an error, which can be used to search the surrounding
area for potential language box locations. a) In this scenario, an SQL language box can be
inserted just before the SELECT token b) Here a Python box can be inserted immediately at the
location of the error.

possible. In order to not interrupt the user, this heuristic must be fast. More importantly

though, we must minimize the insertion of false positives, which would otherwise force

the user to perform unexpected manual work to revert the algorithm’s mistakes which is

generally considered unacceptable [78, 51, 77].

A good indicator that a user may have wanted to insert a language box is when the

current program has a parsing error. Of course, not every error means a language box was

meant to be inserted, and not every language box the user wants to insert is guaranteed

to produce a parsing error. However, it is a good initial heuristic, since the syntax of two

languages is likely to be different, or the two languages share keywords which may clash

with each other. This then leads to parsing errors that can be fixed by surrounding the

offending code with a language box (see Figure 7.1 for an example).

To decide if a parsing error can be fixed via the insertion of a language box, we need to

analyse errors as soon as they appear during the parsing process. This has the advantage

that we have additional parsing information available, like the parse stack, to help us

decide whether the insertion of a box is a valid and sensible choice. Analysis of the errors

is done by the new automatic language box detector, which we will call ALD from here

on. The basic idea is that when an error is encountered, we search for language box

candidates whose insertion around the error would render the input successful. The main

challenge is therefore in finding suitable candidates.

We start by searching backwards from the error to find locations where a language

box would be valid. At each location, and for each language in the composition, we

then try to match as much text as possible. If consumed text is valid in one of the

languages, a candidate is produced. Each language can produce multiple candidates by

consuming more text, even if a candidate for that language has already been produced.

Afterwards, each candidate language box is virtually applied to the user’s input (replacing

the consumed text). If it introduces extra errors or does not fix the initial parsing error,

the candidate is discarded. The algorithm for finding candidates is shown in Listing 7.1.
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1 def find_candidatesD(error: Node):
2 valid_boxes: List[(Language, int)] = []
3 for lang in composition :
4 cut = len(stack)
5 while cut >= 0:
6 if lbox of lang can be shifted at cut :
7 valid_boxes.append((lang, cut))
8 cut -= 1
9

10 candidates: List[(Language, int, Node)] = []
11 for lang, cut in valid_boxes:
12 results = consume_text(stack[cut], lang)
13 for r in results:
14 candidates.append((lang, cut, r))
15

16 f: List[(Language, int, Node)] = []
17 for c in candidates:
18 if confirm_candidate(c) and fixes_error(c, error):
19 f.append(c)
20 return f

Listing 7.1: Algorithm for finding language box candidates, for readability divided into several
steps. First, for each language l in the composition, we scan the text before the error to find
valid locations where a language box of l can be inserted – this step is similar to and was inspired
by the finding of isolation nodes, in that it also uses the parse stack to find such locations (lines
2–8). For each of those locations we then try to consume its following text, using l’s lexer and
parser, and produce a candidate whenever the consumed text is a valid program in l (lines
10–14); consume_text stops when we can’t consume any more text, because either the remaining
text is invalid in l, or there is no more text to consume. Afterwards, we confirm the produced
candidates by checking if they fix the previous error and don’t introduce any new ones (lines
16–19). Candidates are returned in the order they are found: the closer to the error and shorter
they are, the higher they are in the list.

If at the end no candidates are found, the error remains, as normal; if one candidate is

found, we automatically insert the appropriate language box; and if multiple candidates

are found, we ask the user for help.

If only a single language box candidate is found, the language box can be inserted

immediately during the parsing phase. However, we need to make sure that the user can

easily undo the insertion of the box, since it may not always be what the user intended

to do. In practise it is therefore easier to always insert language boxes after the parsing

phase has finished, and re-parse the program with the now inserted box afterwards. This

allows us to easily undo automatic insertions by going back one version in the parse

tree’s history. When the user reverts an automatic language box insertion this way, the

editor needs to remember this decision and avoid any further attempts to insert the

same language box again, so that the user doesn’t have to repeatedly fix the algorithm’s

mistake.
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7.1.1 Finding candidates

As an example, let’s consider a composition of Java and Python, where Python functions

are allowed wherever Java functions are valid. For this we embed into Java a subset of

the Python grammar, accepting only Python functions, which we call pyfuncdef2. We

now assume the user wrote the following program:

1 class Example {
2 def x():
3 }

This program currently has a parsing error at ‘:’3. We now try to find a valid location on

the parse stack, where a pyfuncdef language box can be inserted. Such a location is just

before ‘def’. In the next step we try to find candidates by consuming text, starting at

‘def’. The language pyfuncdef can consume everything up to, but excluding ‘}’, which

causes a parse error and thus cannot be consumed. The only consumed text up to that

point is ‘def x():’, which is not a valid program in pyfuncdef, and so no candidate is

produced as a result.

Assume now that the user inserts ‘pass’ into the above program, resulting in:

1 class Example {
2 def x():
3 pass
4 }

While the error remains at ‘:’, more text can be consumed this time. Again, we use the

language pyfuncdef to consume text starting from ‘def’. Upon consuming ‘pass’, a valid

Python function has been found and a candidate is created. We continue consuming text,

to find further candidates. However, as before, we stop upon reaching ‘}’ which is not

valid in pyfuncdef. Having found a candidate, we now need to check if it fixes the error

and doesn’t introduce any other errors immediately following the box, when it’s applied

to the users input. We replace the consumed text with a language box of pyfuncdef and

attempt a parse in the outer language, Java, starting at the location of the language box.

As soon as we successfully parsed ‘}’ we can stop, confirming that the insertion of the

candidate doesn’t introduce any new errors (Section 7.1.2 discusses why it is sufficient to

stop parsing after ‘}’ and why we don’t have to parse the entire program to determine if

the candidate is valid). Finally, we check if the original error has been eliminated, which

is the case here, as the error node ‘:’ was included in the candidate language box. The

candidate is thus valid and can be automatically inserted into the program.
2This grammar can be constructed from the Python grammar (shown in Appendix G) by changing

the start rule to funcdef.
3The parser expected an opening bracket here, as Java parses ‘def x()’ as a function definition ‘x’ of

the type ‘def’ which needs to be followed by opening and closing brackets.
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Figure 7.2: An example showing why parsing further than necessary to confirm a language box
candidate, can lead to the candidate being falsely rejected. The example shows a composition of
Java and Python, that allows Python expressions wherever Java expressions are valid. The user
inserted a Python list into the program (left), which produced a language box candidate (right).
To validate the candidate we insert it into the program and parse it. However, after parsing
‘*’, an error occurs which would invalidate the constraint that an automatic language box must
not introduce new errors, and thus reject the candidate, despite this being an otherwise valid
insertion.

7.1.2 Confirming candidates

In order to confirm if a candidate is valid, we need to check that it does not introduce

new errors when it is inserted into the parse tree, and also that it fixes the initial parsing

error. In order to determine if a candidate doesn’t introduce new errors, we can simply

check if the first non-whitespace token that follows it can be shifted. The reasons for this

are twofold. Firstly, we don’t want to parse too far past the language box for performance

reasons, and because this could lead to candidates being falsely rejected (see Figure 7.2

for an example). Secondly, whitespace tokens, which most programming languages use,

have the property, that they can almost always be shifted after another terminal symbol.

This means that a whitespace token following a language box candidate would always

confirm the candidate, even if the insertion of the box would cause an error immediately

after that whitespace. This can sometimes lead to invalid candidates being accepted (see

Figure 7.3 for an example).

7.1.3 Handling multiple solutions per language

While many compositions only have one valid outcome, sometimes there are multiple

options for the insertion of a language box. This can be either that there are multiple

languages that can be inserted, or that there are multiple variants of consumed text for a

single language. An example for the latter is shown in the following composition of PHP

and Python, which allows any Python box wherever a PHP expression is valid.
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Figure 7.3: An example showing how using only non-whitespace tokens to confirm language
box candidates gives better results. The example uses a composition of Java and Python, which
allows Python expressions in place of Java expressions. The user just pasted the Python code
‘1 or 2 and 3’ into the assignment, in between ‘=’ and ‘;’. a) If we use any first token to
confirm candidates, we get three results. The first option, ‘1 or 2’, is a valid candidate, because
the following token is whitespace, which can be shifted, confirming the candidate; however the
following ‘and’ then causes an error. The same is true for the third option, ‘1 or 2 and 3;’,
which is followed by a newline, which confirms this candidate, even though the ‘}’ then errors
because the semicolon of the assignment was included in the Python language box. b) When
using the first non-whitespace token for candidate confirmation, we reduce the three options to
one, which can then be automatically inserted.

(a) Using first token (b) Using first non-whitespace token

In the example there are two options to fix the error at ‘y’ in line 2, via the insertion of a

Python box. We can include everything from ‘def’ up to, and including, ‘return 12’,

or we can stop after ‘x = 11’. Since both options are valid and fix the error, we can’t

automatically pick one. Instead, we display an indicator that there are multiple solutions

available (in Eco this is done via a light bulb icon next to the line numbers). From there

the user can choose one of the solutions from a drop-down list. Clicking on one of the

options then automatically inserts a language box and replaces the relevant code:

7.1.4 Limiting automatic insertions

Some grammars can be very unrestrictive, allowing almost any text to be valid. In HTML,

for example, any combination of characters that does not contain ‘<’ or ‘>’ is a valid

program. Unfortunately, this means that in a composition with HTML most errors can be

solved by simply wrapping them with a HTML language box, often resulting in something

the user didn’t intend. For instance, the following example shows a program written in

a composition of Python that allows SQL and HTML wherever Python expressions are

valid:
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We can see that the error at ‘table’ can be solved by either wrapping ‘SELECT * FROM

table’ into a SQL language box, or by just wrapping ‘FROM table’ into a HTML language

box. While a human can easily guess that the user meant to insert a SQL box here, this

scenario is impossible for the algorithm to detect. To remedy this, the creator of the

language composition can add hints that limit the insertion of some language boxes in

such cases.

There are two ways in which a language author can add limitations to a composition:

they can define the symbols that an automatically inserted language box must start

with; or they can exclude specific symbols that must not appear at the beginning

of a language box. Eco’s language composition interface thus provides two functions

set_auto_include(lang, tokens) and set_auto_exclude(lang, tokens). Both take

as input the sublanguage which we want to limit and a list of tokens that are to be

allowed or disallowed at the beginning of the language box. We can then solve the above

problem, by either limiting automatic HTML language boxes to HTML tags, e.g. ‘<img’,

using set_auto_include("HTML", "tag_open"). Or we can disallow HTML language

boxes to start with normal text, using set_auto_exclude("HTML", "text").

Of course, another valid solution is to simply define a more fine-grained composition. For

example, instead of creating a Python/HTML composition that allows all HTML to be

valid wherever Python expressions are valid, the composition could be restricted to only

allow HTML-tags (e.g. ‘<img’, ‘<html’, etc) by embedding only a subset of the HTML

grammar. Although, this may not always be possible, for example if the grammar doesn’t

separate rules on such a fine grained level.

7.1.5 Automatically removing boxes

Despite the solutions described in 7.1.4 it is impossible to always predict where language

boxes should be inserted and there will be some cases where automatically inserted

language boxes do not match the user’s intentions. While the user can always undo a

wrong insertion by pressing Ctrl + Z , we do not want to burden them with the task of

repeatedly cleaning up the algorithm’s mistakes. The following composition of Python

and SQL, though admittedly a rather unlikely scenario, exemplifies the problem:
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1 def x():
2 SELECT = 1
3 FROM = 2
4 table = 3
5 x = SELECT * FROM table

After typing in this program, an SQL language box will have been automatically inserted,

replacing the text ‘SELECT * FROM table’. From a syntax perspective, this was a valid

decision. However, we can see from the variable declarations that the user’s intention

was to multiply the three poorly named variables and simply forgot a ‘*’ between ‘FROM’

and ‘table’. Instead of requiring the user to manually undo the insertion, Eco can

automatically remove inserted language boxes again once more information has become

available. In this example, once the user inserts the missing ‘*’ between ‘FROM’ and

‘table’, the SQL language box becomes invalid. This gives us a good clue that the

language box was inserted accidentally and needs to be removed; with the restriction,

that its entire content must be valid in the outer language. However, sometimes an

automatically inserted language box can become valid in both the inner as well as the

outer language, after the user made additional changes. In those cases Eco prioritises the

outer language and removes the box, but only if the boxes contents and its surrounding

context can be parsed in the outer language. The following constraints summarise the

above (an example using these constraints is given in Figure 7.4):

1. Only automatically inserted boxes can be automatically removed again.

2. If the language box content is invalid, it will be removed only if its content can be

parsed in the outer language.

3. If the language box’s content is valid in both the inner and outer language, it will

be removed only if its removal doesn’t introduce new errors (i.e. if its contents and

the first non-whitespace token following it can be parsed).

Using these constraints for the example from before, the inserted box would be removed

as soon as the user inserts a ‘*’ between ‘FROM’ and ‘table’; however, it stays if more SQL

code is added even it that makes the SQL code temporarily invalid. Note that language

boxes that were inserted by the user, via choosing one of the suggested candidates, count

as manual insertions and won’t be automatically removed, even if they become invalid.
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Figure 7.4: An example showing the constraints for automatic language box removal in practice.
The example uses a composition of PHP and Python where Python expressions are valid at
PHP’s top-level. We can see that as the user types, language boxes are getting automatically
inserted and removed depending on their content. At the beginning the user types ‘f’, which is
not valid in PHP and thus gets replaced by a Python language box, making the program valid
again. The box stays until the user inserts ‘(’ which makes the Python language box invalid,
and since all of its content can be parsed in the outer language, the box is removed. As soon as
the user inserts the closing bracket ‘)’, a Python box is inserted again to fix the PHP parsing
error caused by a missing semicolon. When the user eventually inserts the missing semicolon the
contents of the language box are valid in both PHP and Python. However, since the box can be
removed without introducing an error, we prioritise the outer language, and remove it again.

7.2 Limitations

This section highlights the limitations of the heuristic used, by giving some examples of

ambiguities that cannot be resolved with automatic language boxes, resulting in unwanted

language boxes or no language boxes being inserted at all.

7.2.1 No detection

One example, where error based detection of automatic language boxes doesn’t work,

is when the outer language can match everything in the inner language. For example,

HTML can match arbitrary text between tags. This makes compositions, where other

languages are embedded into HTML, impossible to detect automatically. The following

code example shows this:

1 <html>
2 import sqlite
3 sqlite.connect("test.db")
4 </html>

Since HTML allows any text in between its tags, the insertion does not cause an error,

and thus the ALD is never called to detect automatic language boxes. However, even to

a human it is unclear if the user meant to insert a Python box, or simply wanted to print

out the code in HTML. A non-error based heuristic for finding language box candidates

could show the user that a language box would be valid here, by constantly trying to

match language boxes at each token location during parsing. However, such a solution

would be much slower than the error based approach and would produce a large amount

of candidates at various locations that they user may not care about.
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7.2.2 Wrong detection

Another problem is when the insertion of an automatic language box extends into parts

of the outer language, even if those parts weren’t meant to be included in the box. For

example, this can occur when composing Java and Python, allowing Java functions to be

replaced with Python functions, as shown below:

The user attempted to insert a Python function above the Java function. However, as the

user was typing, a box was automatically inserted which extended into the Java function,

and used the keyword ‘public’ as the body of the Python function. This is valid, since

the keyword is optional in Java, so the insertion of that box does not create any errors,

even though it is clearly not what the user intended.

This problem can be mitigated using additional information stored in the parse trees.

Since we have access to the entire history of the program, we know the order in which

tokens were inserted. We can use this to add a restriction to language boxes which

disallows the inclusion of tokens which are older than the first token in the language

box. In this example, the ‘public’ token was entered before the user started typing ‘def

x():’. Adding this restriction would thus avoid the above problem and only insert a

language box when the user adds a body to the Python method definition. The downside

of this solution is that code intended for a language box cannot be typed out-of-order,

which some users may want to do. We thus can’t add this limitation to the heuristic by

default, and instead need to make it optional, so that it is only used for grammars, where

this is a problem (e.g. in Eco this can be done by setting the flag auto_limit_new of a

composition to true).

7.2.3 Grammar limitations

Sometimes the structure of a grammar can be responsible for the failure to generate

automatic language boxes. For example, let’s consider a composition of PHP and Python,

that allows Python expressions wherever PHP expressions are valid. The user then edits

the composition as follows:
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Figure 7.5: An example showing how sometimes the grammar of a language can keep the
automatic language box detection from finding appropriate candidates. Shown on the left is the
elided parse tree after the user edited the PHP expression ‘$x = 1;’ by inserting the Python
code ‘or not 2’. However, we can see on the right, that by the time the error occurs, PHP has
already reduced ‘$x = 1’ to expr2, and shifted or onto the stack. The only valid locations for
a language box we can thus find are before expr2 and ‘or’. In particular, we cannot find the
location before ‘1’ which would allow us to wrap the entire expression into a box.

The user might reasonably expect to have a second option here, which would allow

the content ‘1 or not 2’ to be wrapped into a Python language box. The algorithm,

however, couldn’t detect this and instead only found a single candidate, ‘not 2’, which

was automatically inserted. The problem lies within the PHP grammar, which also has

a keyword ‘or’, and how the location for language box candidates are calculated. As

described earlier in this chapter, we use a technique similar to error recovery, that rewinds

the parse stack to find a position on the stack, where the language can be inserted.

However, the way the PHP grammar is structured and thus parses the above input, makes

it impossible to find a location on the stack that allows ‘1 or not 2’ to be wrapped into

a language box, as Figure 7.5 shows.

7.3 Recognisers

This section describes in more detail how language box candidates are constructed and

how we can improve performance by not using a full incremental parser to find language

box candidates, but instead using a simple batch recogniser. A recogniser is a parser that

doesn’t execute any actions or generates a parse tree, but rather only validates the input.

This section also shows how a recogniser can be used to decide whether or not a language

box can be removed again.

Section 7.1 described, how in order to find language box candidates, we try to consume as

much text surrounding the error node as possible, generating a candidate every time the

surrounding text is valid in the language of the box. Since we are only interested in the

text that can be parsed and don’t need to generate a parse tree from it, a simple batch
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1 def consume_textD(node: Node, lang: Language) -> List[Node]:
2 lexer = lexer for lang starting at node
3 parser = parser for lang
4 results: List[Node] = []
5 token = lexer.next_token()
6 while token is not None:
7 if parser.parse(token):
8 if parser can accept current input :
9 results.append(lexer.last_node)

10 else: # parse error
11 break
12 token = lexer.next_token()
13 return results

Listing 7.2: An algorithm for consuming text and returning valid substrings for the creation
of language candidates. We first create a lexer that produces tokens in language lang, starting
at node (line 2). We also create a parser for lang (line 3) which is used to parse input (line 7)
and test if the input parsed so far can be accepted (line 8); the latter can be achieved by simply
pretending that the next token is the end-of-file token, and test if the parser reaches an accept
state. We then consume as much text as we can, producing tokens and parsing them (line 6–12),
until no more text can be consumed, either due to an error (line 10), or because we’ve reached
the end of the input. Each time a token was successfully parsed, we test if the input parsed so far
is valid (line 8), and if so, store the last node from the original parse tree that the lexer processed
(line 9). This node is later used to derive the substring from which the language box is created.

recogniser is a good alternative to a full parser, as it improves performance and reduces

memory usage. An important restriction is that the recogniser must lex and parse input

from the parse tree without actually altering the parse tree or any nodes within it. A

recogniser in the ALD takes as input a node from which it starts parsing, and returns all

valid substrings from that input, until either a parsing error occurs, or there is no more

input left to parse. Substrings are returned in form of their end node in the original parse

tree. The substring can then be derived by reading all tokens between the start and end

node. The algorithm is shown in Listing 7.2.

7.3.1 Custom recogniser for Python

In order to produce language box candidates for whitespace-sensitive languages like

Python, we need to be able to create indentation tokens during the consumption of

input. Section 4.2 described how support for whitespace-sensitive languages was added by

allowing an additional phase between lexing and parsing that inserts indentation tokens

into the parse tree. This method can’t be used here, since we do not know yet where the

input ends. Fortunately, since the recogniser is not incremental (and doesn’t need to be),

this is not necessary and indentation tokens can be generated on the fly. To do this, we

implement a separate recogniser for Python which uses a wrapper around the lexer that

inspects the tokens that the lexer produces and, when appropriate, returns indentation
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1 def next_tokenD(todo: List[Token], indent: List[int]) -> Token:
2 if todo:
3 return todo.pop(0) # return first element
4 token = lex.next_token()
5 if token is newline :
6 prevl = previous line
7 currl = current line
8 if prevl is not empty:
9 todo.append(NEWLINE )

10 if currl is not empty:
11 if prevl.ws < currl.ws:
12 indent.append(currl.ws)
13 todo.append(INDENT )
14 elif prevl.ws > currl.ws:
15 ws = indent.pop()
16 while ws > currl.ws:
17 todo.append(DEDENT )
18 ws = indent.pop()
19 if ws != currl.ws:
20 todo.append(UNBALANCED )
21 todo.append(token)
22 return todo.pop(0)

Listing 7.3: To support language box detection for Python, we create a method that wraps
around the lexer and produces indentation tokens as needed by keeping track of the indentation
levels. Producing and returning indentation tokens delays the parsing of tokens which have
already been lexed. In order to not forget to parse those tokens, we use a to-do list (line 3). We
always return the first item of that list. If it is empty, we continue lexing from the input (line 4).
The remaining code is similar to the batch indentation approach described in Section 4.2.1.

tokens instead. While the Python recogniser inherits most of the behaviour of the default

recogniser, it also needs to keep track of the indentation levels. Listing 7.3 shows how the

recogniser wraps around the lexer and produces indentation tokens whenever they are

needed.

7.3.2 Incremental Recogniser for auto removal

Section 7.1.5 described how automatically inserted language boxes can automatically be

removed again, if they become invalid. The condition for this is that the box’s content

is valid in the outer language. In essence, we need to temporarily remove the language

box, paste its content where the box was before, and then check if the program can

still be parsed; of course without actually altering the parse tree. A recogniser is thus

again a good choice. In order to test if the contents of the box are valid in the outer

language, we first need to initialise the recogniser to the state just before the language

box would be parsed. We can do this incrementally, by only traversing subtrees that are

direct ancestors of the language box. All other subtrees can be skipped (i.e. incrementally

shifted) similar to the default incremental parser.
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1 def preparseD(bos: Node, lbox: Node, parser):
2 # "mark" ancestors of lbox
3 path_to_lbox = set()
4 parent = lbox.parent
5 while parent is not Root :
6 path_to_lbox.add(parent)
7 parent = parent.parent
8

9 # initialise parser
10 node = bos
11 while node is not lbox:
12 if node not in path_to_lbox:
13 parser.parse(node)
14 else: # traverse node
15 if node.children:
16 node = node.children[0]
17 else:
18 node = node.right_neighbour()

Figure 7.6: A parse tree with a language box that we want to automatically remove (left) and
the preparse-algorithm (right). In order to test if the box’s content is valid in the outer language,
we initialise a recogniser to the state just before we would parse the language box, using the
recogniser’s preparse method. This is done, by ‘marking’ the ancestors of the language box, as
if the language box contained changes (lines 3–7), and then incrementally parse those subtrees
up to the box (lines 10–18).

This process is implemented via an additional method preparse, which incrementally

initialises a recogniser’s parsing state to the state just before a given node. Figure 7.6

shows an example of a parse tree, where we want to test if a language box can be removed,

and the algorithm to initialise the recogniser. After the recogniser has been initialised, we

simply use consume_text to parse the content of the language box. If the entirety of the

language box can be successfully parsed in the outer language, the box can be removed.

Of course, depending on the parsing status of the box, we may also need to parse at least

one non-whitespace token following the former language box.

7.4 Related work

Scannerless parsing [86, 79] is well suited for language composition since it can parse

any context-free grammars which are closed under composition. A notable example of

this is Spoofax [41], a language workbench for extending and composing context-free

grammars. Although scannerless parsing can parse ambiguous programs by creating a

parse forest, it is still necessary to reduce the parse forest into a single parse tree in order

to compile or interpret it. A common way to reduce the parse forest is to remove all parse

trees that are invalid when considering additional information about the input, such as

types [84]. Using type information can avoid the need for separators to disambiguate

languages in many cases, however still requires a set of disambiguation rules, such as
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preferring identifiers in the outer language (i.e. the meta language) over those in the inner

language (i.e. the object language), or choosing the shortest path if multiple valid options

are available. Unfortunately, not all ambiguities can be solved this way, making the use

of separators still a necessity.

Choosing separators is not trivial, since they can still introduce ambiguities if the same

separator symbol is used for different nonterminals of the embedded language. This

requires explicit disambiguation, i.e. using a different separator for each embedding with a

different nonterminal symbol, e.g. cls{...}cls for embedding classes and func{...}func

for functions [8]. Since this can quickly cause “syntactic clutter“ [13, p. 4], an alternative

solution is to use type information to automatically disambiguate embeddings, thus

reducing the amount of unique separators that would otherwise be required [91, 13].

Unfortunately, since these approaches are dependent on types, they do not work for

dynamically typed languages. Furthermore, heuristics such as picking the shortest path

on multiple valid options can hide options the user cares about (as shown in Section 7.1.3).

Despite these improvements, Spoofax’s grammar definition SDF, which allows arbitrary

CFGs, can give no guarantees that its grammars are unambiguous, even more so when

they are composed together, since composing two unambiguous grammars can lead to an

ambiguous one. Spoofax thus uses reject grammars, which solve this problem, but make

such grammars context-sensitive [80].

Another notable example for language composition is Copper [82] which implements a

context-aware scanner to solve ambiguities in language compositions. The basic idea

is that the parser can tell the scanner which tokens it can parse next and the scanner

can only return results from that list. This means that if two composed languages have

similar tokens (e.g. keywords, identifiers), the lexer solves ambiguities by returning the

token for the language that it is currently parsing (i.e. that is currently in context).

This allows Copper to compose languages by extending the host language’s grammar

rules with references to rules in the embedded language. However, at the point where

another language can be embedded, i.e. where the two languages meet, a token may be

valid in both the host as well as the embedded language. Copper solves this problem

via dominates clauses which are defined within the lexing rules. For example, if an

identifier in the host language clashes with a keyword in the embedded language, then

we can define a clause that says that the keyword dominates the identifier and needs

to be prioritised. Unfortunately, this has the downside that those tokens cannot be

used in the host language at that point, restricting the host language’s expressiveness.

This also means that each composition needs to determine all of those cases and modify

grammar and lexer in ways that solve these ambiguities, making it impossible to create a

one-size-fits-all solution for arbitrary compositions.
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Conclusion

8.1 Summary

In this thesis I first explained and corrected Wagner’s incremental parsing algorithms, and

then extended them with the concept of incremental ASTs and support for whitespace-

sensitive languages such as Python. Using the revised algorithms as a basis for language

composition editing, I introduced language boxes which allow the fine grained compo-

sition of different languages, solved the problem of language boxes within tokens such

as comments and strings, and added functionality to automatically detect and insert

language boxes wherever possible and feasible. All techniques presented in this thesis

were implemented in a reference prototype editor Eco. A more detailed summary is as

follows.

Chapter 2 gives a background into incremental lexing and parsing, by introducing and

expanding the techniques developed by Tim Wagner. During the development of Eco

incremental parsing techniques have not only been shown to be useful for language

composition, but have enabled the quick implementation of IDE features (e.g. syntax-

highlighting) that would have been substantially more work using traditional parsing

techniques. Unfortunately, Wagner’s description of managing the history of parse trees

left out many details for the reader to fill in so Chapter 2 also showed my own algorithms

to store and recover parse trees which were based loosely on Wagner’s ideas.

In Chapter 3 I summarised and corrected Wagner’s error recovery algorithms. These

techniques allow the incremental parser to integrate user changes into the parse tree that

would otherwise be hidden by errors. This results in more complete ASTs at earlier stages

of the program, and additionally produces useful error messages based on the actual edits

the user made. However, while a history-based error recovery approach works well in most

138
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cases, for some the produced error messages are less helpful and I therefore recommend

highlighting the actual parse error alongside the erroneous user edits.

I then extended Wagner’s incremental parser by adding support for incrementally gener-

ated abstract syntax trees as well as incremental handling of indentation based languages

such as Python (Chapter 4). Incremental abstract syntax trees fit quite naturally within

the incremental parsing techniques and only minor edits were necessary to extend the

incremental parser. Incremental ASTs not only allowed more accurate syntax-highlighting

that isn’t plagued by some of the issues that regular expression based approaches seem

to have; it also gives us a basis on which we can run semantic analyses of the program as

it is being typed without having to revert to subprocesses which only run occasionally

and are thus often out-of-date by the time they are finished.

I then showed how an editor can be extended with language boxes using the editor Eco

which was developed alongside this thesis (Chapter 5). I showed how language boxes

simplify the composition of languages in a manner unimaginable when using existing

approaches which often have to revert to unsightly separators between languages and

require careful construction of the composed grammars. I also briefly showed how language

boxes can be easily extended to be used for non-textual languages, an addition that opens

the door for more research and many creative compositions. Eco’s use within two case

studies shows that it is mature enough to be used in practice, despite it only being a

prototype with relatively little development time compared to other IDEs. The PyHyp

case study also showed how language boxes can solve the code migration problem and

one can imagine this scaling to larger projects as well.

While introducing language boxes into an editor is straight-forward, it has one challenging

knock-on effect. Since language boxes are allowed anywhere within a program, they can

be commented out or even inserted into strings, something that traditional lexers are not

expected to handle. I therefore presented a solution for such scenarios by introducing

multinodes (Chapter 6), essentially a special token that can contain multiple other nodes,

while presenting itself to the parser as a normal token. This allows the editor to embed

language boxes inside of strings or comments without the need to flatten them and thus

irrecoverably destroying their internal structure.

Language boxes need to be inserted manually and explicitly, which sometimes can become

a tedious, and in some obvious cases unnecessary, task. I thus extended the editor with

automatic language boxes (Chapter 7). This approach uses error information to detect

when a user attempted to insert a language box and then finds and inserts the correct box

for them automatically. In the same vein automatically inserted language boxes are also

removed again if their content has changed in such a way that makes it clear that it is



Chapter 8. Conclusion 140

meant for the outer language. Implementing those techniques into Eco have shown them

to work well in many cases making the use of language boxes more intuitive and natural.

8.2 Future Work

While this thesis showed how to develop a basic incremental parser-based text editor

from the ground up, Eco is still far from being a full IDE. One of Eco’s main issues is

performance. While the editing of programs is fast, thanks to the incremental parser,

compiling and loading cached grammars is slower than it needs to be. Eco was planned

and developed as a prototype to create and test the techniques described in this thesis.

Thus, performance took a back seat to ease of implementation and debugging. For these

reasons, Eco was developed in Python making heavy use of object-orientation; switching

to low-level data structures could thus greatly improve speed and memory usage. I thus

believe that an important and useful future work area would be a rewrite of Eco in a

compiled language.

A further area of research is semantic analysis. Chapter 5 briefly mentioned the use

of name binding to highlight unused variables and to implement a basic form of code

completion. Currently, this requires the analysis of the entire AST, which is too time

consuming to run each time the AST changes (which is after every keypress) and is thus

currently turned off by default. A common solution in most IDEs, which have the same

problem, is to run name binding in a separate process in the background. However, I

believe that name binding can be made incremental using the already incremental AST.

This would allow us to update name binding information instantly as the user types the

program. It would also improve code completion, which in many IDEs has a noticeable

delay. As a foundation for incremental name binding we could use the work of Néron et

al. [61] who create scope graphs from ASTs to connect references to declarations. Since

each node in the graph relates back to a node in the AST, I believe it to be possible to

generate incremental scope graphs by updating nodes in the scope graph whenever their

relating AST node changes.

In Chapter 5 I briefly showed the use of non-textual languages in Eco, albeit the usefulness

of the given examples is somewhat limited. I believe, however, that this area opens up

plenty of research opportunities to see how different and more interactive non-textual

languages can be integrated into an editor. For example, one possible integration would

be tables or databases, which could be manipulated and referenced from within the editor.

Another is the embedding of graphs into the code that implements them.
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Currently, Eco only uses Wagner’s non-repairing history-based approach for error recovery

shown in Chapter 3. This solution works well for smaller edits where it can precisely isolate

and show the source of such errors. However, due to the lack of a history, this doesn’t

work on erroneous files that are directly imported or pasted into Eco. Such scenarios

still require a traditional repairing error recovery approach. Additionally, history-based

error recovery can sometimes be misleading if the change that caused the error was valid

and the error happens later on. These issues, paired with the difficulty of implementing

the history-based error recovery algorithms (see Chapter 3), make it hard to justify

implementing this approach over traditional error recovery solutions. A further area of

research would thus be investigating if traditional error recovery solutions can be made

incremental and embedded into an incremental parser. A possible candidate for this is

MF [20], a repairing error recovery algorithm based on the Fischer [28] family of error

recovery algorithms, which can find the complete set of minimum cost repairs in an

acceptable time and reduces the cascading error problem.

Habits are hard to break and syntax-directed editors have shown that convincing program-

mers to switch to a different tool than what they’ve used for years, can be difficult. For

most programming languages, which are largely text-based, this is not a huge problem, as

they are compatible with any text editor. Unfortunately for Eco, its support for language

composition requires programs to be represented as parse trees internally as well as when

they are saved to disk, as language boxes are difficult to represent textually. This means

that composed programs written in Eco can currently only be read and edited in Eco.

One way this problem could be solved is to allow other text editors to plug into Eco:

while the text editor takes care of the rendering, it communicates with an Eco background

process, forwarding any user input and letting Eco handle everything related to parsing.

Another significant problem is version control. Since Eco programs are stored as parse

trees, such files are incompatible with version control systems such as Git or Mercurial.

While a temporary solution is the exporting of those files into plain text, this is only

useful to see, at a quick glance, what was changed, but doesn’t display language boxes,

and more importantly can’t be used for patching or version control since language box

information is lost during the export. However, this problem can be solved by using

diffing algorithms for trees, such as GumTree [25]. Since language boxes behave like all

other nodes with children, these algorithm can be used for Eco files without modification.
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Appendix A

Incremental vs batch parsing

performance without lexing

The following shows a comparison of incremental parsing in Eco with a batch parser

generated using grmtools, which doesn’t include lexing times. While the results of the

batch parser are roughly two times faster than with lexing, incremental parsing in Eco is

still about 5-7x faster.
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Appendix B

Possible refinement problem

The following shows a scenario where Wagner’s error recovery behaves unexpectedly and

discusses a possible reason for it.

B.1 Current vs previous version in pass2

When implementing Wagner’s refinement algorithm I discovered scenarios where a subtree

would be retained when I was expecting the algorithm to run out-of-context analysis on

it. Figure B.1 shows an example of such a scenario.

The figure shows the outcome that we would expect when isolating the subtree at node S,

where A is discarded, B and C are retained, and G is processed via out-of-context analysis.

However, even though A spans the error node in the previous version, it does not in the

current version. Wagner’s pass2 method uses the current version of the tree to determine

the offset and text-length of a node. In the current version A does not span the error

location and thus is processed with retain_or_discard to process all retainable subtrees.

A itself is not retainable, since its text-length is not the same as in the previous version, so

its changes are discarded. Then retain_or_discard is recursively called on its children,

of which B and C are retainable. The child G is not retainable, since it doesn’t exist in

the current version, nor are any of its children. In particular G is not processed with

out-of-context analysis so any changes within it won’t be parsed and integrated into the

parse tree.

The reason for this is that Wagner uses the current version of a node’s text-length within

the pass2 method. However, it doesn’t make much sense to call retain_or_discard on

A which due to its changed text-length can never be retained. This is true for any node

that spans the error node in the previous version. In fact, the only subtrees we can retain
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Figure B.1: An example where Wagner’s refinement algorithm behaves unexpectedly. It shows
error recovery on a parse tree as it is expected. The error occurs in node F, causing the isolation
of node S. Node B and C can be retained and G is processed via out-of-context analysis. However,
Wagner’s refinement algorithm calls retain_or_discard on A which means G is not out-of-context
analyses and thus any changes within it won’t be integrated into the parse tree.

are the ones that have the same text-length in both versions and thus can never span

the error node. If we instead recursively call pass2 on A it would allow us to still retain

B and C, but run out-of-context analysis on G. We can achieve this by simply using the

previous instead of the current version in pass2.

In Eco’s implementation this change was briefly applied and an initial test suite run did

not reveal any problems. However, it is difficult to say if this change affects error recovery

in other unexpected ways. Since Wagner’s version still works well in most cases, this

change was thus reverted again, as it requires some more reasoning about its effects on

the overall algorithm.



Appendix C

Incremental parsing algorithm

The following shows the full incremental parsing algorithm including all changes and

improvements discussed in Chapter 3: setting the exists-flag when nodes get removed

from or insert into the parse tree; using bottom-up node reuse upon reductions; skipping

empty nonterminals in optimistic shifts; only revisiting isolated subtrees if they themselves

or their surrounding context has changed.

1 state: int = 0
2 stack: List[Node] = []
3 reused: Set[Node] = set()
4

5 def incparse(bos: Node):
6 verifying: bool = False
7 la: Node = next_lookahead(bos)
8 while True:
9 if la is a terminal :

10 action = parsetable.lookup(state, la.symbol)
11 if action is Shift :
12 verifying = False
13 shift(la, action)
14 la = next_lookahead(la)
15 elif action is Reduce :
16 reduce(action.production)
17 elif action is Accept :
18 return True
19 elif action is Error :
20 if verifying:
21 right_breakdown()
22 verifying = False
23 else:
24 la = recover()
25 else: # la is a nonterminal
26 if la.nested_changes or len(la.children) == 0 or la.has_errors() \
27 or (la was isolated and surrounding_context(la).changed):
28 la = left_breakdown(la)
29 else:
30 action = parsetable.lookup(state, la.symbol)
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31 if action is Shift :
32 verifying = True
33 shift(la, action)
34 la = next_lookahead(la)
35 elif action is Reduce :
36 reduce(action.production)
37 elif action is Error :
38 la = left_breakdown(la)
39

40 def left_breakdown(la: Node) -> Node:
41 la.exists = False
42 if len(la.children) > 0:
43 return la.children[0]
44 else:
45 return next_lookahead(la)
46

47 def right_breakdown():
48 node = stack.pop() # remove optimistically shifted subtree
49 node.exists = False
50 while node is nonterminal :
51 reused.discard(node)
52 for c in node.children:
53 action = parsetable.lookup(stack[-1].state, c.symbol)
54 shift(c, action)
55 node = stack.pop()
56 node.exists = False
57 action = parsetable.lookup(state[-1].state, node.symbol)
58 shift(node, action) # leave final token on stack
59

60 def next_lookahead(la: Node) -> Node:
61 while la.right_sibling(prev) is None:
62 la = la.get_parent(prev)
63 return la.right_sibling(prev)
64

65 def shift(la: node, s: Shift):
66 stack.append(la)
67 la.exists = True
68 state = la.state = s.state
69

70 def reduce(p: Production):
71 children: List[Node] = []
72 for i in p.length():
73 children.append(stack.pop())
74 state = stack[-1].state
75 n = ambig_reuse_check(p, children)
76 goto = parsetable.lookup(state, n.symbol)
77 state = goto.state
78 stack.append(n)
79 n.exists = True
80 calc_text_length(n, current_version)
81 if p.has_rewriterule():
82 exec_rewriterule(n, p)
83

84 def surrounding_context(node: Node) -> Node:
85 la: Node = next_lookahead(node)
86 while la is a nonterminal :
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87 if la.has_children():
88 la = la.children[0]
89 else:
90 la = next_lookahead(la)
91 return la
92

93 def calc_text_length(node: Node, version: int):
94 if node is terminal :
95 l = len(node.value(version))
96 else:
97 l = 0
98 for c in node.get_children(version):
99 l += c.text_length(version)

100 node.set_text_length(l, version)
101

102 def exec_rewriterule(node: Node, p: Production):
103 astnode: AstNode = p.rewriterule.execute(node)
104 if not is_reusable_astnode(node.ast, astnode):
105 node.ast = astnode
106

107 def is_reusable_astnode(old: AstNode, new: AstNode):
108 if old is None:
109 return False
110 if old.name != new.name:
111 return False
112 if children are not the same :
113 return False
114 return True
115

116 # Error recovery
117

118 def recover():
119 error_offset: int = stack_offset(stack[-1])
120 iso: Node, i: int = find_iso_tree()
121 stack = stack[:i+1]
122 refine(iso, error_offset)
123 stack.append(iso)
124 iso.exists = True
125 return next_lookahead(iso)
126

127 def find_iso_tree() -> (Node, int):
128 node = stack[-1]
129 while node is not root:
130 node = node.parent
131 offset: int = get_offset(node, curr)
132 sl = 0
133 for i in len(stack):
134 if sl == offset and can_shift(node, i):
135 return node, i
136 elif sl > offset:
137 break
138 sl += stack[i].text_length()
139 return root, 0
140

141 def can_shift(node: Node, i: int) -> bool:
142 s: int = stack[i].state
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143 action = parsetable.lookup(s, node.symbol)
144 return action is Goto
145

146 def stack_offset() -> int:
147 l = 0
148 for n in stack:
149 l += n.text_length(curr)
150 return l
151

152 def get_offset(node: Node, version: int) -> int:
153 offset = 0
154 while node is not root:
155 left: Node = node.left\_sibling(version)
156 if left:
157 node = left
158 offset += node.text_length(version)
159 else:
160 node = node.get_parent(version)
161 return offset
162

163 def refine(isonode: Node, error_offset: int):
164 offset = stack_offset()
165 pass1(isonode, offset, offset, error_offset)
166 isonode.discard()
167 pass2(isonode, offset, error_offset)
168

169 def pass1(node: Node, offset: int, poffset: int, error_offset: int):
170 for child in node.get_children(prev):
171 if offset + child.text_length(curr) <= error_offset:
172 find_retainable(child, offset, poffset)
173 elif offset < error_offset:
174 pass1(child, offset, poffset)
175 else:
176 break
177 offset += child.text_length(curr)
178 poffset += child.text_length(prev)
179

180 def find_retainable(node: Node, offset: int, poffset: int):
181 if node.exists:
182 if not node.nested_changes() or same_text_pos(node, offset, poffset):
183 add node to retainable
184 return
185 for child in node.get_children(prev):
186 find_retainable_subtrees(node)
187 offset += child.text_length(curr)
188 poffset += child.text_length(prev)
189

190 def same_text_pos(node: Node, offset: int, poffset: int) -> bool:
191 if node.text_length(prev) == node.text_length(curr) and offset == poffset:
192 return True
193 return False
194

195 def pass2(node: Node, offset: int, error_offset: int):
196 for child in node.get_children(curr):
197 if offset > error_offset:
198 out_of_context_analysis(child)
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199 elif offset + child.text_length(curr) <= error_offset:
200 retain_or_discard(child, node)
201 else:
202 child.discard()
203 pass2(child, offset)
204 offset += child.text_length(curr)
205

206 def retain_or_discard(node: Node, parent: Node):
207 if node in retainable:
208 node.set_parent(parent)
209 remove node from retainable
210 return
211 discard_and_mark(node)
212 for c in node.get_children(curr):
213 retain_or_discard(c, node)
214

215 def discard_and_mark(node: Node):
216 node.load(previous version )
217 if node.changed:
218 node.local_error = True
219 if node.nested_changes:
220 node.nested_errors = True
221 else:
222 node.nested_errors = False
223

224 def out-of-context-analysis(subtree: Node):
225 vbos: Node = preceding(subtree)
226 veos: Node = next_lookahead(subtree)
227 pstate: int = subtree.state
228 psymbol: Symbol = subtree.symbol
229 op = new incremental ooc parser
230 op.state = vbos.state
231 op.tree = Root(vbos, subtree, veos>)
232 if op.incparse(veos, pstate) and op.stack[0].symbol == psymbol:
233 integrate changes
234 else:
235 revert_changes(subtree)
236

237 def revert_changes(node: Node):
238 if node.has_changes():
239 node.load(self.prev_version)
240 if node.nested_changes:
241 node.nested_errors = True
242 if node.changed:
243 node.local_error = True
244 for c in node.children:
245 revert_changes(c)
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Creating compositions in Eco

The following shows how two languages can be composed from start to finish using Eco.

A composition generally consists of a base language and one or more embedded languages.

In this example, we choose ToyPHP as our base language, whose grammar is shown in

Figure D.2. As our embedded language we choose ToyPython, shown in Figure D.3.

While it is possible to embed entire languages, in this case we only want to embed two

subsets of ToyPython: functions and expressions. Figure D.1 shows an example of the

resulting composition in action.

To create a composition, we use the same format (JSON) that is used to define languages

in Eco. The composition of ToyPHP and ToyPython is shown below:

1 {
2 "name": "ToyPHP + ToyPython",
3 "file": "grammars/toyphp.eco",
4 "base": "PHP",
5 "compositions": [
6 {
7 "location": "add_expr",
8 "name": "ToyPy expr",
9 "file": "grammars/toypy.eco",

10 "base": "Python",
11 "subset": "mul_expr"
12 },
13 {
14 "location": "function",
15 "name": "ToyPy method",
16 "file": "grammars/toypy.eco",
17 "base": "Python",
18 "subset": "method"
19 }
20 ]
21 }
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Figure D.1: Composition of two languages where a Python-like language ToyPython has been
embedded into a PHP-like language ToyPHP. The user can write ToyPython code to embed either
expressions or functions. Name resolution informs the user about undefined variables or functions
both locally as well as across languages using orange, squiggly lines.

Each language definition has three required fields: the display name of the language

(name), the location of its grammar (file), and which language the definition is based

on (base), which Eco uses for syntax-highlighting and name binding. Optional fields are:

subset, which is used to create subsets of languages; and compositions, which describes the

languages we want to embed. The latter is a list of language definitions which require an

additional field location, telling the outer language where we want the embedded language

to be valid. For example, for the above composition of ToyPHP and ToyPython, we have

embedded in the outer language the expressions subset of ToyPython at the location

‘add_expr’, and the functions subset at the location ‘function’. Grammars are written

within Eco itself, which it provides syntax highlighting and name binding to aid the user,

and are stored as .eco files.

We can now load this composition into Eco, which makes it available as an option when

creating or importing files. Automatic language box detection and insertion works out-of-

the-box, though, while automatic detection is activated by default, automatic insertion

needs to be activated via the editor’s menu.

Adding name binding rules to our new composition, which allows the displaying of

undeclared variables, requires some more work. Eco uses the NBL approach to define

name binding rules using references to the AST nodes constructed by the rewrite rules

during parsing. Eco automatically loads name binding rules of the same name as the

grammar and the ‘.nb’ file-extension. The name binding rules for ToyPHP and ToyPython

can be found in Figure D.1.
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class ::= "class" "ID" "{" functions "}"
{ClassDeclaration(name=#1, body= #3)};

functions ::= functions function {#0 + [#1]}
| function {[#0]};

function ::= "func" "ID" "(" ")" "{" statements "}"
{FunctionDefinition(name=#1, body= #5)};

statements ::= statements statement {#0 + [#1]}
| statement {[#0]};

statement ::= assignment {#0}
| func_call {#0};

func_call ::= "ID" "(" ")" {FunctionCall(name= #0)};

assignment ::= "var" "ID" "=" add_expr {Assignment(name=#1, value= #3)};

add_expr ::= scalar {#0}
| add_expr "+" scalar {Add(lhs=#0, rhs= #2)};

scalar ::= "ID" {Var(name= #0)}
| "INT" {Num(value= #0)};

%%
%implicit_ws=true
%%
INT: "[0 -9]+"
ID: "[a-zA-Z_][a-zA -Z0 -9]*"
<ws>: "[ \\t]+"
<return >: "[\\n\\r]"

Figure D.2: Grammar and lexing rules of ToyPHP, a small language syntactically inspired by
PHP. The grammar has been extended with AST rewrite rules.

When a program with language boxes is parsed, each language box runs their own separate

name binding analysis, confined to the boundaries of the box. The outer language then

merges the results from the language boxes into its own results. However, ToyPHP and

ToyPython use different names to define certain types, e.g. the former defines functions as

function, while the latter uses method. For cross-language scoping to work as expected

we need to adjust the scoping rules of each language to define which parts of another

language it can ‘see’. In this case, ToyPHP’s ClassDeclaration and FunctionCall rules

were extended to also scope (or reference) method, while ToyPython’s FunctionCall

now also references function. This allows both languages to see each other’s function

definitions as shown in Figure D.1.
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class ::= "class" "ID" ":" methods {ClassDecl(name=#1, body= #3)};

methods ::= methods method {#0 + [#1]}
| method {[#0]};

method ::= "def" "ID" "(" ")" ":" stmts {Method(name= #1, body= #5)};

stmts ::= stmts statement {#0 + [#1]}
| statement {[#0]};

statement ::= assignment {#0}
| funccall {#0};

funccall ::= "ID" "(" ")" {FuncCall(name= #0)};

assignment ::= "ID" "=" mul_expr {Assign(var=#0, val= #2)};

mul_expr ::= add_expr {#0}
| mul_expr "*" add_expr {Mul(l=#0, r=#2)};

add_expr ::= atom {#0}
| add_expr "+" atom {Add(l=#0, r=#2)};

atom ::= "ID" {Ident(name= #0)}
| "NUM" {Int(val= #0)}
| list {List{val= #0};

list ::= "[" "]" {[]}
| "[" list_items "]" {#1};

list_items ::= atom {[#0]}
| list_items "," atom {#0 + [#2]};

%%
%implicit_ws=true
%%
NUM: "[0 -9]+"
ID: "[a-zA-Z_][a-zA -Z0 -9]*"
<ws>: "[ \\t]+"
<return >: "[\\n\\r]"

Figure D.3: Grammar and lexing rules of ToyPython, a small language syntactically inspired
by Python. The grammar has been extended with AST rewrite rules.
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ClassDeclaration(name , body):
defines class name
scopes function , method

FunctionDefinition(name , body):
defines function name
scopes variable

Assignment(name , value):
defines variable name
references variable value

Identifier(name):
references variable name

FunctionCall(name):
references function , method name

(a) ToyPHP

ClassDecl(name , body):
defines class name
scopes method

Method(name , body):
defines method name
scopes variable

Assign(name , value):
defines variable name
references variable value

Ident(name):
references variable name

FuncCall(name):
references method , function name

(b) ToyPython

Listing D.1: Name binding rules for ToyPHP and ToyPython. Both rules are similar to most
object-oriented languages, e.g. a class can see functions defined within it, while functions can see
variables definitions within their body. To allow cross-language scoping, ToyPHP’s classes and
function calls are also allowed to see method, which is a type unique to ToyPython. Similarly,
function calls in ToyPython are allowed to reference function. The additions are highlighted in
green.
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Additional examples of language

boxes inside strings

The following contains some additional examples showing how the merging algorithm

from Listing 6.3 handles different variations of the scenarios shown in Section 6.4.

E.1 Merging normal nodes into multinodes

This example shows how a normal node can be merged into an existing multinode. Let’s

assume a scenario where a user moves the end quote of a string to include another token

currently located next to the string:

"abc <SQL> def"gh ⇒ "abc <SQL> defgh"

After re-lexing, the lexer returns the following generated tokens and processed nodes:

generated tokens processed nodes

([‘"abc’, lbox, ‘defgh"’], string) multinode gh"

Merging of this token is very similar to what we have already seen in the examples in

Section 6.4. First, the multinode is reused and its children are overwritten: the node

"abc and the language box remain unchanged, while node def is updated to defgh" .

Afterwards the excess node gh" is simply deleted. The following figure shows a summary

of that process:
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E.2 Creating a normal and multinode at the same time

This example shows a scenario, where a node needs to be split up with one part remaining

a normal node, while the other part needs to be moved inside of a multinode. Let’s

consider the following scenario, where the user inserted quotes into a program as shown

here:

abc <SQL> def ⇒ ab"c <SQL> def"

Re-lexing the changed nodes results into the following generated tokens and processed

nodes:

generated tokens processed nodes

(‘ab’, var)
ab"c <SQL> def"

([‘"c’, lbox, ‘def"’], string)

The merge algorithm starts with the generated token ‘ab’ and the processed node ab"c .

Since the token is not part of a multitoken, no multinode needs to be created and we

end up in the Overwrite branch of the algorithm, updating node ab"c ’s value to ‘ab’.

The next generated token is ‘"c’, which is part of a multitoken. We thus first create a

new multinode, and then use the Insert branch. Since the token is the first within the

multitoken the function insert_after directly inserts it into the multinode (lines 39–40).

The remaining tokens are merged using the Overwrite branch, updating existing nodes

while also moving them into the multinode, as shown in the summary below:
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E.3 Create a normal node from a multinode split

This example shows the reverse of the previous example. A string is manipulated in

such a way, that a node that is part of a multinode needs to be split up, with one part

remaining within the multinode while the other part is moved outside. Let’s assume a

user editing a program as follows:

x = "abc <SQL> def" ⇒ x = "abc <SQL> de"f

After re-lexing, this results in the following generated tokens and processed nodes:

generated tokens processed nodes

([‘"abc’, lbox, ‘de"’], string)
multinode

(‘f’, var)

The algorithm starts by overwriting the nodes "abc , <SQL> , and def"f , with the first

two only updating their type and the last also changing its value to ‘de"’. After this,

the next generated token (new) is ‘f’, while old is set to None, and we end up in the

Insertion branch of the algorithm. Since the previous token ‘de"’ was the last child of

the multitoken, last is set to the multinode and current_mt is set to None (lines 11–16).

This results in token ‘f’ simply being inserted after the multinode:

E.4 Applying changes within a multinode

This example shows how changes are being applied within a multinode. This is a common

scenario which happens when the user simply makes edits within a multinode. Most

of the time this just results in extra tokens being inserted into the multinode. Though

occasionally this can also lead to nodes being split up, as the following scenario shows.

Here the user inserted a newline into a string. We also assume that as in Eco, newlines

are treated specially, meaning that they always stand on their own and can’t be combined

with other text:
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x = "abc <SQL> def" ⇒ x = "abc <SQL> de\nf"

After re-lexing, this results in the following generated tokens and processed nodes:

generated tokens processed nodes

([‘"abc’, lbox, ‘de’, ‘\n’, ‘f"’], string) multinode

The algorithm begins by overwriting the nodes "abc , <SQL (even though they technically

remain unchanged), and updating node de\nf" with ‘de’. With the next processed

node old node being None and the next generated token new being ‘\n’, the new token

is simply inserted after de . Next up is another new token ‘f"’, which is also simply

inserted. Afterwards, both new and old are None and the algorithm terminates. The

following figure shows a summary of those steps:
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Automatic language boxes algorithm

The following summarises the algorithms shown in Chapter 7 and shows implementations

for some of the less important helper functions, which are only explained in prose.

Readers may find this summarised version helpful in understanding the algorithms that

are otherwise split up over the chapter.

1 def post_incparse():
2 for lang, start, end in candidates: # insert lbox
3 replace_content_with_lbox(lang, start, end)
4

5 for lbox in program: # remove lbox
6 if can_remove_lbox(lbox):
7 replace_lbox_with_content(lbox)
8

9 def find_candidates(error):
10 # called during incremental parsing immediately after an error is found,
11 # i.e. before recover()
12 valid_boxes = []
13 for lang in composition :
14 cut = len(stack)
15 while cut >= 0:
16 if lbox of lang can be shifted at cut :
17 valid_boxes.append((lang, cut))
18 cut -= 1
19

20 candidates = []
21 for lang, cut in valid_boxes:
22 results = consume_text(stack[cut], lang)
23 for end in results:
24 candidates.append((lang, cut, end))
25

26 f = []
27 for c in candidates:
28 if confirm_candidate(c) and fixes_error(c, error):
29 f.append(c)
30 return f
31
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32 def confirm_candidate(c):
33 parser = throwaway parser for outer language
34 lang, cut, end = c
35 parser.stack = stack[:cut]
36 parser.parse(newlbox(lang))
37 return can_parse_after(parser, end)
38

39 def fixes_error(c, error):
40 if error was parsed in is_valid :
41 return True
42 _, cut, end = c
43 start = stack[cut]
44 if start is error:
45 return True
46 while start is not end:
47 start = find_next_terminal(start)
48 if start is errornode:
49 return True
50 return False
51

52 def consume_text(node, lang):
53 lexer = lexer for lang starting at node
54 parser = parser for lang
55 results = []
56 token = lexer.next_token()
57 while token is not None:
58 if parser.parse(token):
59 if can_accept(parser):
60 results.append(lexer.last_node)
61 else: # parse error
62 break
63 token = lexer.next_token()
64 return results
65

66 def can_accept(parser):
67 tmp = parser.state[:]
68 accept = parser.parse(EOS)
69 parser.state = tmp
70 return accept
71

72 def can_remove_lbox(lbox):
73 parser = parser for outer language
74 preparse(get_bos(), lbox, parser)
75 results = consume_text(lbox.get_bos(), outer lang )
76 if results[-1] is last node in lbox :
77 if lbox contains parse errors :
78 return True
79 return can_parse_after(parser, lbox)
80

81 def can_parse_after(parser, node):
82 term = find_next_terminal(node)
83 while term is whitespace:
84 if not parser.parse(term):
85 return False
86 term = find_next_terminal(term)
87 return parser.parse(term)
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Python grammar

A slightly modified Python grammar based on the grammar of CPython’s reference

implementation:
file_input :

file_input "NEWLINE"
| stmts
| ;

stmts :
stmts stmt

| stmt ;

decorator :
"@" dotted_name "(" arglist ")" "NEWLINE"

| "@" dotted_name "(" ")" "NEWLINE"
| "@" dotted_name "NEWLINE" ;

decorators :
decorator

| decorator decorators ;

decorated :
decorators classdef

| decorators funcdef ;

funcdef : "def" "NAME" parameters "COLON" suite ;

parameters :
"(" varargslist ")"

| "(" ")" ;

varargslist :
fpdef_loop

| fpdef_loop ","
| fpdef_loop "," kwargs_opt
| kwargs_opt ;

fpdef_loop :
fpdef_loop "," fpdef_opt

| fpdef_opt ;
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fpdef_opt :
fpdef

| fpdef "=" test ;

kwargs_opt :
"*" "NAME"

| "**" "NAME"
| "*" "NAME" "**" "NAME" ;

fpdef ::=
"NAME"

| "(" fplist ")" ;

fplist :
fpdef fplist_loop1 ","

| fpdef fplist_loop1 ;

fplist_loop1 :
fplist_loop1 "," fpdef

| ;

stmt :
simple_stmt

| compound_stmt
| slcomment "NEWLINE" ;

simple_stmt :
small_stmt simple_stmt_loop1 ";" slcomment_opt "NEWLINE"

| small_stmt simple_stmt_loop1 slcomment_opt "NEWLINE" ;

simple_stmt_loop1 :
simple_stmt_loop1 ";" small_stmt

| ;

small_stmt :
expr_stmt

| print_stmt
| del_stmt
| pass_stmt
| flow_stmt
| import_stmt
| global_stmt
| exec_stmt
| assert_stmt ;

expr_stmt :
testlist augassign yield_expr

| testlist augassign testlist
| expr_stmt_loop ;

expr_stmt_loop :
expr_stmt_loop "=" testlist

| expr_stmt_loop "=" yield_expr
| testlist ;

augassign :
"+=" | "-=" | "*=" | "/=" | "%=" | "&="

| "|=" | "^=" | "<<=" | ">>=" | "**=" | "//=" ;

print_stmt :
"print"
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| "print" test print_stmt_loop1
| "print" test print_stmt_loop1 ","
| "print" ">>" test
| "print" ">>" test print_stmt_loop2
| "print" ">>" test print_stmt_loop2 "," ;

print_stmt_loop1 :
print_stmt_loop1 "," test

| ;

print_stmt_loop2 :
"," test

| print_stmt_loop2 "," test ;

del_stmt : "del" exprlist ;

pass_stmt : "pass" ;

flow_stmt :
break_stmt

| continue_stmt
| return_stmt
| raise_stmt
| yield_stmt ;

break_stmt : "break" ;

continue_stmt : "continue" ;

return_stmt :
"return"

| "return" testlist ;

yield_stmt : yield_expr ;

raise_stmt :
"raise"

| "raise" test
| "raise" test "," test
| "raise" test "," test "," test ;

import_stmt :
import_name

| import_from ;

import_name : "import" dotted_as_names ;

import_from : "from" import_option1 "import" import_option2 ;

import_option1 :
dotted_name

| dot_loop dotted_name
| dot_loop ;

dot_loop :
dot_loop "DOT"

| "DOT" ;

import_option2 :
"*"

| "(" import_as_names ")"
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| import_as_names ;

import_as_name :
"NAME"

| "NAME" "as" "NAME";

dotted_as_name :
dotted_name

| dotted_name "as" "NAME" ;

import_as_names :
import_as_name import_as_names_loop1

| import_as_name import_as_names_loop1 "," ;

import_as_names_loop1 :
import_as_names_loop1 "," import_as_name

| ;

dotted_as_names :
dotted_as_name

| dotted_as_names "," dotted_as_name ;

dotted_name ::= "NAME" dotted_name_loop1 ;

dotted_name_loop1 :
dotted_name_loop1 "DOT" "NAME"

| ;

global_stmt : "global" "NAME" global_stmt_loop1 ;

global_stmt_loop1 :
global_stmt_loop1 "," "NAME"

| ;

exec_stmt :
"exec" expr

| "exec" expr "in" test
| "exec" expr "in" test "," test ;

assert_stmt :
"assert" test

| "assert" test "," test ;

compound_stmt :
if_stmt | while_stmt | for_stmt | try_stmt

| with_stmt | funcdef | classdef | decorated ;

if_stmt :
"if" test "COLON" suite if_stmt_loop1

| "if" test "COLON" suite if_stmt_loop1 "else" "COLON" suite ;

if_stmt_loop1 :
if_stmt_loop1 "elif" test "COLON" suite

| ;

while_stmt :
"while" test "COLON" suite

| "while" test "COLON" suite "else" "COLON" suite ;

for_stmt :
"for" for_exprlist "in" testlist "COLON" suite
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| "for" for_exprlist "in" testlist "COLON" suite "else" "COLON" suite ;

try_stmt :
"try" "COLON" suite "finally" "COLON" suite

| "try" "COLON" suite try_stmt_loop1
| "try" "COLON" suite try_stmt_loop1 "else" "COLON" suite
| "try" "COLON" suite try_stmt_loop1 "finally" "COLON" suite
| "try" "COLON" suite try_stmt_loop1

"else" "COLON" suite "finally" "COLON" suite ;

try_stmt_loop1 :
try_stmt_loop1 except_clause "COLON" suite

| except_clause "COLON" suite ;

with_stmt : "with" with_item with_stmt_loop1 "COLON" suite ;

with_stmt_loop1 :
with_stmt_loop1 "," with_item

| ;

with_item :
test

| test "as" expr ;

except_clause :
"except"

| "except" test
| "except" test "as" test
| "except" test "," test ;

suite :
simple_stmt

| slcomment_opt "NEWLINE" "INDENT" suite_loop "DEDENT" ;

suite_loop :
suite_loop stmt

| stmt;

testlist_safe :
old_test

| old_test testlist_safe_loop1
| old_test testlist_safe_loop1 "," ;

testlist_safe_loop1 :
testlist_safe_loop1 "," old_test

| "," old_test ;

old_test :
or_test

| old_lambdef ;

old_lambdef :
"lambda" "COLON" old_test

| "lambda" varargslist "COLON" old_test ;

test :
or_test

| or_test "if" or_test "else" test
| lambdef;

or_test :
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and_test
| or_test "or" and_test ;

and_test :
not_test

| and_test "and" not_test ;

not_test :
"not" not_test

| comparison ;

comparison : expr
| comparison comp_op expr ;

comp_op :
"<" | ">" | "==" | ">=" | "<=" | "<>" | "!="

| "in" | "not" "in" | "is" | "is" "not" ;

expr :
xor_expr

| expr "|" xor_expr ;

xor_expr :
and_expr

| xor_expr "^" and_expr ;

and_expr :
shift_expr

| and_expr "&" shift_expr ;

shift_expr :
arith_expr

| shift_expr "<<" arith_expr
| shift_expr ">>" arith_expr ;

arith_expr :
term

| arith_expr "+" term
| arith_expr "-" term ;

term :
factor

| term "*" factor
| term "/" factor
| term "%" factor
| term "//" factor ;

factor :
"+" factor

| "-" factor
| "~" factor
| power ;

power :
atom

| atom "**" factor
| atom power_loop
| atom power_loop "**" factor ;

power_loop :
power_loop trailer
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| trailer ;

atom :
"(" ")"

| "(" yield_expr ")"
| "(" testlist_comp ")"
| "[" "]"
| "[" listmaker "]"
| "{" "}"
| "{" dictorsetmaker "}"
| "‘" testlist1 "‘"
| "NAME"
| number
| atom_loop
| multiline_string ;

number : "NUMBER" | "HEX" | "OCTAL" | "BINARY" ;

atom_loop :
atom_loop single_string

| single_string ;

multiline_string : "MLS";
single_string : "dstring" | "sstring";

listmaker :
test list_for

| test listmaker_loop
| test listmaker_loop "," ;

listmaker_loop :
listmaker_loop "," test

| ;

testlist_comp :
test comp_for

| test testlist_comp_loop
| test testlist_comp_loop "," ;

testlist_comp_loop :
testlist_comp_loop "," test

| ;

lambdef :
"lambda" "COLON" test

| "lambda" varargslist "COLON" test ;

trailer :
"(" ")"

| "(" arglist ")"
| "[" subscriptlist "]"
| "DOT" "NAME" ;

subscriptlist :
subscript subscriptlist_loop

| subscript subscriptlist_loop "," ;

subscriptlist_loop :
subscriptlist_loop "," subscript

| ;
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subscript :
"DOT" "DOT" "DOT"

| test
| "COLON"
| "COLON" test
| "COLON" sliceop
| "COLON" test sliceop
| test "COLON"
| test "COLON" test
| test "COLON" sliceop
| test "COLON" test sliceop ;

sliceop :
"COLON"

| "COLON" test ;

exprlist :
exprlist_loop

| exprlist_loop "," ;

exprlist_loop :
expr

| exprlist_loop "," expr ;

testlist :
testlist_loop

| testlist_loop "," ;

testlist_loop :
testlist_loop "," test

| test;

dictorsetmaker :
test "COLON" test comp_for

| test "COLON" test dictorsetmaker_loop1
| test "COLON" test dictorsetmaker_loop1 ","
| test comp_for
| test dictorsetmaker_loop2
| test dictorsetmaker_loop2 "," ;

dictorsetmaker_loop1 :
dictorsetmaker_loop1 "," test "COLON" test

| ;

dictorsetmaker_loop2 :
dictorsetmaker_loop2 "," test

| ;

classdef :
"class" "NAME" "COLON" suite

| "class" "NAME" "(" ")" "COLON" suite
| "class" "NAME" "(" testlist ")" "COLON" suite ;

arglist :
arglist_loop1 argument

| arglist_loop1 argument ","
| arglist_loop1 "*" test arglist_loop2
| arglist_loop1 "*" test arglist_loop2 "," "**" test
| arglist_loop1 "**" test ;

arglist_loop1 :
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arglist_loop1 argument ","
| ;

arglist_loop2 :
arglist_loop2 "," argument

| ;

argument :
test

| test comp_for
| test "=" test ;

list_iter :
list_for

| list_if ;

list_for :
"for" for_exprlist "in" testlist_safe

| "for" for_exprlist "in" testlist_safe list_iter ;

for_exprlist : exprlist ;

list_if :
"if" old_test

| "if" old_test list_iter ;

comp_iter :
comp_for

| comp_if ;

comp_for :
"for" exprlist "in" or_test

| "for" exprlist "in" or_test comp_iter ;

comp_if :
"if" old_test

| "if" old_test comp_iter ;

testlist1 : test testlist1_loop ;

testlist1_loop :
testlist1_loop "," test

| ;

yield_expr :
"yield"

| "yield" testlist ;

slcomment_opt :
slcomment

| ;

slcomment : "slcomment" ;
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Glossary

Abstract Syntax Tree (AST) Simplified version of the parse tree that removes irrele-

vant information such as whitespace, brackets. Used to perform further analysis of

the program, e.g. name binding, code generation.

Context-free grammar (CFG) A formal grammar consisting of a set of rules describ-

ing a formal language.

Domain specific language (DSL) A language designed for a specific problem (e.g.

SQL for databases), unlike general purpose languages.

Error recovery A technique that allows a parser to continue parsing after a parsing

error occured. There are various forms of error recovery, typically falling into two

subsets: repairing and non-repairing.

Foreign function interface (FFI) Mechanism that allows a program to call functions

written in another language.

Generalised parsing An extension of an LR parser that allows the parsing of ambiguous

and nondeterministic grammars.

Graph An automaton generated by a parser generator from a grammar. Used as an

intermediate representation to construct a parse table from.

Integrated Development Environment (IDE) A software development environment

which typically includes build-automation tools, a debugger, and quality-of-life fea-

tures, such as name binding, type analysis, code formatting, etc.

Lexing The process of taking and input string and splitting it up into several tokens

according to a set of lexing rules.
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Isolation Wagner’s error recovery solution. Isolating a subtree allows an incremental

parser to continue parsing by simply ignoring the changes within the isolated

subtree.

Language box A special token that allows the embedding of one language into another.

Lookahead The amount of characters exceeding a token that the lexer needed to scan

to generate the token. Also used to describe the next node that is being processed

by the parser.

Lookback The amount of preceeding tokens whose type is dependent on another token.

Can be calculated from lookahead values.

LR A popular type of bottom-up parsing which accepts deterministic CFGs, typically

constructed using a parser generator.

Jetbrains MPS A modern syntax-directed editor used to design domain-specific lan-

guages.

Multinode A special parsetree nodes which looks like a token but can contain multiple

tokens as children. Used to represent tokens which also contain language boxes,

such as comments or strings.

Node An element in a parse tree representing nonterminals and tokens.

Nonterminal A node representing a grammar rule, generated by the parser during a

reduction.

Offset The textual offset of a node within a parse tree.

Parsing The process of reading some input to determine if it is valid according to a

grammar, while execution parsing actions (defined in the grammar) or constructing

a parse tree.

Parse tree The tree representation of some input generated by the parser. Consists of

nonterminals and tokens.

Parsing Expression Grammar (PEG) A grammar that is closed under composition

and inherently umambiguous (ambiguities are solved using a choice operator which

always select the first match).

Production Part of a grammar rule, also called alternative.

Recogniser A parser whose only goal is to determine if some input is valid, but does

not generate a parse tree or run any other executions during parsing.
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Rule Part of a grammar, which describes a feature of the language.

Scannerless parsing A form of generalised parsing where the tokenisation and parsing

are done in a single step.

Syntax-directed editing (SDE) A form of editing programs which, unlike traditional

text-editors, works on an AST and constructs programs from templates which can

be filled in by the user, avoiding the need to parse user input and thus avoiding

syntax errors.

Subtree A partial parse tree describing the tree under a specific node that is not the

root node.

Symbol The type of a node. The most common type is nonterminal and terminal,

although there are special types, like the beginning/end-of-stream as well as the

end-of-file symbol.

Parse table Simplified, lightweight representation of a graph which is used by the parser

to decide if some input is valid.

Terminal symbol Used by the parser to shift into different states. This is typically the

type of a token, however there are also special terminal symbols, like the end-of-file

symbol.

Text-length The textual length of a node in the parse tree. A token’s text-length is the

character length of its value, while the text-length of a nonterminal is the combined

text-length of all tokens contained in its subtree.

Token Returned by the lexer when splitting up the user input according to some lexing

rules. Each token represents a substring of the input and has a value, e.g. 1, and a

type, e.g. INT.

Whitespace Characters such as spaces, tabs, and newlines.

Yacc Popular parser generator for LR grammars.
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